Рубрика «atmel»

Как и многие другие самоделкины, я регулярно использую микроконтроллеры AVR для всяких разных любительских поделок. А благодаря концепции «Arduino» эти поделки теперь приобретают еще и элегантный вид. Действительно, за какие-то 300-400 рублей мы получаем миниатюрную многослойную плату с маской, шелкографией и с полностью разведенной на ней периферией для микроконтроллера (причем в SMD исполнении!). Я уже не говорю о всевозможных подключаемых модулях этой же «Arduino» серии: датчиках, контролерах, дисплеях и целых наборов, так нужной нам дополнительной периферии. И опять же всё также недорогих и в прекрасном исполнении. Практически уже нет необходимости, что-то разводить и допаивать на «коленке».­­­­­­­­­

Программирование и обмен данными с «ARDUINO» по WI-FI посредством ESP8266 - 1

Но все эти разнообразные любительские поделки, требуют естественно, предварительного программирования. Да и в последующем при разных усовершенствованиях, постоянно приходится эти поделки перепрошивать. Понятное дело, что удобнее делать это дистанционно, чем постоянно таскать их к обычному программатору. Вообще, благодаря той же платформе «Arduino», вариантов и здесь много: Bluetooth, ZigBee, радиоканал с вашим личным протоколом, IR, и даже Wi-Fi. Все они позволяют наладить беспроводной контакт с вашим микроконтроллером. Но мы же остановимся на последнем варианте. Основных причин здесь четыре:

1: современно, интернет вещей же!

2: беспроводной роутер есть в каждой квартире, регистрируй в домашней сети свои устройства и вуаля!

3: ваши поделки осуществляют революционный скачок в своём развитии; мало того, что их можно программировать на расстоянии, они теперь ещё и сами могут общаться с окружающим их миром: электронные часы самостоятельно берут точное время с часовых NTP-серверов, исполнительные устройства управляются с другого конца города или страны, регистрирующие девайсы сохраняют накопленные данные в облако и т.д. и т.п.

4: есть замечательная серия микросхем ESP8266 на которой не очень легко всё это реализовать.

Читать полностью »

image

Шла середина мая, поисковики взрываются от запросов связанных с так называемыми fidget spinner’ами, Youtube завален роликами о DIY спинерах, мир погряз в хайпе по этим крутящимся конструкциям.

Где-то в это же время в мою голову пришла шальная мысль, которая сместила все другие в сторону и воссев на пьедестал изрекла — «Ты должен сделать POV fidget spinner!».
Читать полностью »

В одном из приборов, возникла необходимость полного восстановления предыдущего режима работы в случае какого либо сбоя по питанию или кратковременному отключению. Можно было конечно заложить источник резервного питания, но его использование было ограничено, так скажем, конструктивными особенностями прибора. Как результат, было решено записывать ряд необходимых для восстановления значений в память. Так как обновлять значения для восстановления я собирался часто, в связи с ограниченным количеством циклов записи, использование Flash и EEPROM даже не рассматривалось.

На мой взгляд, в данный момент самое оптимальное решение для таких случаев, это FRAM память. Можно было бы записывать необходимые данные циклически во Flash, постоянно инкрементируя адрес для новых значений, но в данном случае возникала необходимость где-то сохранять указатель на самые последние значения, либо полностью считывать Flash и затем уже извлекать «самые свежие» данные.

У Lapis Semiconductor есть три линейки FRAM микросхем, которые обмениваются с ведущим устройством по I2C или SPI, либо по параллельному интерфейсу. Преимущества последовательных интерфейсов перед параллельным очевидны. Что же касается I2C и SPI, то скорость передачи данных по SPI в 4 раза выше чем по I2C, но и потребление в связи с этим выше практически в 16 раз.

Мне же выбирать не приходилось, в наличии была только MR45V256 c 32 Кб памяти и SPI интерфейсом. 32 Кб для моих нужд более чем достаточно, поэтому оставшуюся память я использовал для записи всевозможной технической информации и логирования команд полученных от оператора.

Работа с FRAM памятью очень простая. Любая операция начинается с перевода линии выбора ведомого устройства CS# в низкое состояние. Затем отправляется одна из команд операций, их всего 6:

— Чтение данных(READ)
— Запись данных(WRITE)
— Запись в регистр статуса FRAM(WRSR)
— Чтение из регистра статуса FRAM(RDSR)
— Установка защиты данных от перезаписи(WRDI)
— Снятие защиты данных от перезаписи(WREN)
Читать полностью »

Эта статья заканчивает цикл публикаций о разработке измерительного устройства в онлайн IDE mbed от компании ARM.

Собственно, рассказ о разработке софта для микроконтроллеров и об использованных аппаратных блоках уже завершен, целых пять статей получилось. Но я люблю цельные истории, поэтому расскажу и о том, как при попытке заключить разработанную систему в корпус всё было испорчено. Дважды.

Предыдущие статьи:

Читать полностью »

Продолжаем серию публикаций, посвященных использованию среды ARM mbed для создания прототипа измерительного устройства.

Сегодня я наконец-то заканчиваю описание программной части — остались вопросы связанные с выводом на TFT-дисплей изображений и кириллицы. Сделаем всё красиво.

Как перестать бояться и полюбить mbed [Часть 5] - 1

Содержание цикла публикаций:

Читать полностью »

Продолжаем серию публикаций, посвященных использованию среды ARM mbed для создания прототипа измерительного устройства. Сегодня говорим об основах работы с сенсорным вводом.

Как перестать бояться и полюбить mbed [Часть 4] - 1

Содержание цикла публикаций:

  1. Обзор использованных программных и аппаратных решений.
  2. Начало работы с графическим контроллером FT800. Использование готовых mbed-библиотек для периферийных устройств.
  3. Подключение датчика HYT-271. Создание и публикация в mbed собственной библиотеки для периферийных устройств.
  4. Разработка приложения: Структура программы, работа с сенсорным экраном.
  5. Разработка приложения: Вывод изображений на дисплей, проблемы русификации.
  6. Печать деталей корпуса. Анализ ошибок проектирования и другие выводы.

Читать полностью »

Продолжаем серию публикаций, посвященных использованию среды ARM mbed для создания прототипа измерительного устройства.

Напомню, что речь идет о разработке устройства с сенсорным экраном, которое служит для высокоскоростного измерения температуры и относительной влажности. Самое интересное в этой истории — подход к созданию встроенного ПО. Для написания программы используется онлайн IDE mbed, позволяющая создавать железонезависимый код, который одинаково работает на отладочных платах от SiLabs, Atmel, Wiznet, STM32, NXP и других производителей.

Сегодня подключаем датчик.

Как перестать бояться и полюбить mbed [Часть 3] - 1

Содержание цикла публикаций:

  1. Обзор использованных программных и аппаратных решений.
  2. Начало работы с графическим контроллером FT800. Использование готовых mbed-библиотек для периферийных устройств.
  3. Подключение датчика HYT-271. Создание и публикация в mbed собственной библиотеки для периферийных устройств.
  4. Разработка приложения: Структура программы, работа с сенсорным экраном.
  5. Разработка приложения: Вывод изображений на дисплей, проблемы русификации.
  6. Печать деталей корпуса. Анализ ошибок проектирования и другие выводы.

Третья часть под катом.
Читать полностью »

Продолжаем серию публикаций, посвященных использованию среды ARM mbed для создания прототипа измерительного устройства.

Напомню, что речь идет о разработке устройства с сенсорным экраном, которое служит для высокоскоростного измерения температуры и относительной влажности. Самое интересное в этой истории — подход к созданию встроенного ПО. Для написания программы используется онлайн IDE mbed, позволяющая создавать железонезависимый код, который одинаково работает на отладочных платах от SiLabs, Atmel, Wiznet, STM32, NXP и других производителей.

Сегодня начинаем работать с выводом картинки на TFT-дисплей.

Как перестать бояться и полюбить mbed [Часть 2] - 1

Содержание цикла публикаций:

  1. Обзор использованных программных и аппаратных решений.
  2. Начало работы с графическим контроллером FT800. Использование готовых mbed-библиотек для периферийных устройств.
  3. Подключение датчика HYT-271. Создание и публикация в mbed собственной библиотеки для периферийных устройств.
  4. Разработка приложения: Структура программы, работа с сенсорным экраном.
  5. Разработка приложения: Вывод изображений на дисплей, проблемы русификации.
  6. Печать деталей корпуса. Анализ ошибок проектирования и другие выводы.

Вторая часть под катом.
Читать полностью »

У меня есть четкая ассоциация компании Atmel и супер-успешных контроллеров Atmega. Когда речь идет о чем-то немного более мощном, о следующей ступени, я сразу думаю о stm32. Но совсем недавно мне удалось проверить на деле микроконтроллеры от Atmel SAM4S на базе ARM Cortex-M4. Это отличный вариант для перехода с Arduino, подумал я. У меня оказался не просто голый микроконтроллер, а отладочная плата Sam4S EK rev8. Для прошивки я использовал программатор SAM-ICE. Мой вариант «Hello world!» или «Blink» под катом.

Atmel ARM в DIY?! «Hello world» в Atmel Studio для Cortex M4 - 1
Читать полностью »

Мы занимаемся поставками электронных компонентов. Чтобы делать нашу работу хорошо, недостаточно просто уметь привозить и продавать электронные компоненты — ещё важно уметь демонстрировать их преимущества. Именно поэтому мы не только пишем обзорные статьи, но и создаем руководства по применению разных «железок» и разрабатываем небольшие демонстрационные проекты.

Как перестать бояться и полюбить mbed. [Часть 1] - 1

Об истории создания одного из таких демонстрационных проектов я и расскажу — буду последовательно описывать процесс создания прототипа устройства, оснащенного ёмкостным сенсорным экраном, и предназначенного для измерения относительной влажности и температуры.

Особенный интерес представляет подход к написанию встроенного ПО — софт полностью написан в онлайн IDE от mbed. То есть программа для микроконтроллера была создана на единственной вкладке гугл-хрома и одинаково работает на отладочных платах от разных производителей.

Содержание цикла публикаций:

  1. Обзор использованных программных и аппаратных решений.
  2. Начало работы с графическим контроллером FT800. Использование готовых mbed-библиотек для периферийных устройств.
  3. Подключение датчика HYT-271. Создание и публикация в mbed собственной библиотеки для периферийных устройств.
  4. Разработка приложения: Структура программы, работа с сенсорным экраном.
  5. Разработка приложения: Вывод изображений на дисплей, проблемы русификации.
  6. Печать деталей корпуса. Анализ ошибок проектирования и другие выводы.

Первая часть под катом.
Читать полностью »