Рубрика «bayesian inference»

Материалы летней школы Deep|Bayes по байесовским методам в глубинном обучении - 1

Глубинное обучение в последние годы стало ключевым направлением исследований в машинном обучении. Начавшись с архитектурных прорывов, позволявших эффективно обучать глубокие нейросети, оно стало распространяться на другие подобласти, предоставляя набор эффективных средств там, где для решения задачи требуется приближение некоторой сложной функции.

Многие современные исследовательские статьи активно используют байесовский формализм в сочетании с глубокими нейросетями, приходя к интересным результатам. Мы – исследовательская группа BayesGroup с помощью наших друзей из Сколтеха, а так же при поддержке Высшей Школы Экономики, Сбербанка, Яндекса, Лаборатории Касперского, JetBrains и nVidia – решили поделиться накопленным опытом и устроить летнюю школу по байесовским методам в глубинном обучении Deep|Bayes, где подробно рассказать, что такое байесовские методы, как их комбинировать с глубинным обучением и что из этого может получиться.

Отбор на школу оказался весьма сложным занятием – мы получили более 300 заявок от сильных кандидатов, но вместить смогли только 100 (приятно, что среди участников были не только жители Москвы и Петербурга, но и студенты из регионов, а так же русскоговорящие гости из-за границы). Пришлось отказать многим сильным кандидатам, поэтому для смягчения этого прискорбного факта мы решили сделать доступными максимальное количество материалов, которыми и хотим поделиться с читателями.

Читать полностью »

PyMC3 — МСМС и не только

PyMC3 — MCMC и не только - 1
Привет!

В этом посте уже упоминался PyMC3. Там можно почитать про основы MCMC-сэмплирования. Здесь я расскажу про вариационный вывод (ADVI), про то, зачем все это нужно и покажу на довольно простых примерах из галереи PyMC3, чем это может быть полезно. Одним из таких примеров будет байесовская нейронная сеть для задачи классификации, но это в самом конце. Кому интересно — добро пожаловать!

Читать полностью »

Когда речь заходит про машинное обучение, обычно подразумевают большие объемы данных — миллионы или даже миллиарды транзакций, из которых надо сделать сложный вывод о поведении, интересах или текущем cостоянии пользователя, покупателя или какого-нибудь аппарата (робота, автомобиля, дрона или станка).
Однако в жизни обычного аналитика самой обычной компании много данных встречается нечасто. Скорее даже наоборот — у вас будет мало или очень мало данных — буквально десятки или сотни записей. Но анализ все же нужно провести. Причем не какой попало анализ, а качественный и достоверный.

Зачастую ситуация усугубляется еще и тем, что вы без труда можете нагенерить для каждой записи много признаков (чаще всего добавляют полиномы, разницу с предыдущим значением и значением за прошлый год, one-hot-encoding для категориальных признаков и т.п.). Вот только совсем нелегко разобраться, какие из них действительно полезны, а какие только усложняют модель и увеличивают ошибки вашего прозноза.

Для этого вы можете воспользоваться методами байесовой статистики, например, Automatic Relevance Determination. Читать полностью »