Рубрика «Блог компании Open Data Science»

В этой статье я бы хотел рассказать про некоторые приемы работы с данными при обучении модели. В частности, как натянуть сегментацию объектов на ббоксы, а также как обучить модель и получить разметку датасета, разметив всего несколько сэмплов.
Пицца аля-semi-supervised - 1
Читать полностью »

Весной этого года проходил знаменательный Retro Contest от OpenAI, который был посвящен обучению с подкреплением, meta learning и, конечно же, Sonic’у. Наша команда заняла 4 место из 900+ команд. Область обучения с подкрепление немного отличается от стандартного машинного обучения, а уж этот контест отличался от типичного соревнования по RL. За подробностями прошу под кат.

image


Читать полностью »

Image
Машинное обучение и нейросети становятся все более незаменимыми для многих компаний. Одна из основных проблем, с которыми они сталкиваются — деплой такого рода приложений. Я хочу показать показать практичный и удобный способ подобного деплоя, для которого не требуется быть специалистом в облачных технологиях и кластерах. Для этого мы будем использовать serverless инфраструктуру.

Читать полностью »

image

Недавно закончился отборочный этап DataScienceGame2018, который проходил в формате kaggle InClass. DataScienceGame — это международное студенческое соревнование, которое проводится на ежегодной основе. Нашей команде удалось оказаться на 3м месте среди более чем 100 команд и при этом НЕ пройти в финальный этап.
Читать полностью »

Офлайн А-Б тестирование в ритейле - 1 Это реальная история. События, о которых рассказывается в посте, произошли в одной теплой стране в 21ом веке. На всякий случай имена персонажей были изменены. Из уважения к профессии всё рассказано так, как было на самом деле.

Привет, хабор. В этом посте речь пойдет про пресловутое А/Б тестирование, к сожалению даже в 21ом веке его не избежать. В онлайне уже давно существуют и процветают альтернативные варианты тестирования, в то время, как в офлайне приходится адаптироваться по ситуации. Об одной такой адаптации в массовом офлайн ритейле мы и поговорим, приправив историю опытом взаимодействия с одной топовой консалтинговой конторой, в общем го под кат.

Читать полностью »

В конце зимы этого года прошло соревнование IEEE's Signal Processing Society — Camera Model Identification. Я участвовал в этом командном соревновании в качестве ментора. Об альтернативном способе формирования команды, решении и втором этапе под катом
kaggle: IEEE's Camera Model Identification - 1
Читать полностью »

Kaggle: Amazon from Space — трюки и хаки при обучении нейросетей - 1

Летом прошлого года закончилось соревнование на площадке kaggle, которое было посвящено классификации спутниковых снимков лесов Амазонки. Наша команда заняла 7 место из 900+ участников. Не смотря на то, что соревнование закончилось давно, почти все приемы нашего решения применимы до сих пор, причём не только для соревнований, но и для обучения нейросетей для прода. За подробностями под кат.
Читать полностью »

Как создать свой датасет с Киркоровым и Фейсом на Яндекс Толоке - 1
Нейронными сетями уже никого не удивишь. Практически каждый человек знает, что такое машинное обучение, линейная регрессия, random forest. Каждый год тысячи людей проходят курсы по машинному обучению на ODS и Coursera. Любой школьник за пару недель теперь может освоить keras и клепать нейроночки. Но в нейронных сетях, как и во всем машинном обучении, помимо создания хорошего алгоритма, необходимы данные, на которых алгоритм будет обучаться.

Читать полностью »

image

Дисклеймер

Целью написания этой статьи было сделать краткий обзор принципов построения Интеллектуальных Систем Поддержки Принятия Решений (ИСППР), роли машинного обучения, теории игр, классического моделирования и примеров их использования в СППР. Целью статьи не является забуриться вглубь тяжелой теории автоматов, самообучаемых машин, равно как и инструментов BI.

Введение

Существет несколько определений ИСППР, которые, в общем-то, крутятся вокруг одного и того же функционала. В общем виде, ИСППР — это такая система, которая ассистирует ЛПР (Лицам, Принимающим Решения) в принятии этих самых решений, используя инструментарии дата майнинга, моделирования и визуализации, обладает дружелюбным (G)UI, устойчива по качеству, интерактивна и гибка по настройкам.

Зачем нужны СППР:

  1. Сложность в принятии решений
  2. Необходимость в точной оценке различных альтернатив
  3. Необходимость предсказательного функционала
  4. Необходимость мультипотокового входа (для принятия решения нужны выводы на основе данных, экспертные оценки, известные ограничения и т.п.)

Читать полностью »

Глубокое обучение с использованием R и mxnet. Часть 1. Основы работы - 1

Привет!

Эта статья является первой частью руководства по приготовления нейронных сетей с использованием библиотеки mxnet на языке R. Источником вдохновения послужила онлайн-книга Deep Learning — The Straight Dope, объема которой достаточно для осознанного использования mxnet на Питоне. Примеры оттуда будут воспроизводиться с поправкой на отсутствие реализации интерфейса Gluon для R. В первой части рассмотрим установку библиотеки и общие принципы работы, а также реализуем простую линейную модель для решения задачи регрессии.Читать полностью »