Рубрика «Блог компании Wunder Fund»

Логарифмируй это: метод логарифмической производной в машинном обучении - 1

Прием, о котором пойдет речь — метод логарифмической производной — помогает нам делать всякие штуки, используя основное свойство производной от логарифма. Лучше всего этот метод зарекомендовал себя в решении задач стохастической оптимизации, которые мы исследовали ранее. Благодаря его применению, мы нашли новый способ получения стохастических градиентных оценок. Начнем с примера использования приема для определения оценочной функции.

Довольно математично.
Читать полностью »

Генеративные модели от OpenAI - 1

Эта статья посвящена описанию четырех проектов, объединенных общей темой усовершенствования и применения генеративных моделей. В частности, речь пойдет о методах обучения без учителя и GAN.
 
Помимо описания нашей работы, в этой статье мы хотели бы подробнее рассказать о генеративных моделях: их свойствах, значении и возможных перспективах развития.
 
Читать полностью »

LSTM – сети долгой краткосрочной памяти - 1

Рекуррентные нейронные сети

Люди не начинают думать с чистого листа каждую секунду. Читая этот пост, вы понимаете каждое слово, основываясь на понимании предыдущего слова. Мы не выбрасываем из головы все и не начинаем думать с нуля. Наши мысли обладают постоянством.

Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Представим, например, что мы хотим классифицировать события, происходящие в фильме. Непонятно, как традиционная нейронная сеть могла бы использовать рассуждения о предыдущих событиях фильма, чтобы получить информацию о последующих.

Решить эту проблемы помогают рекуррентые нейронные сети (Recurrent Neural Networks, RNN). Это сети, содержащие обратные связи и позволяющие сохранять информацию.
Читать полностью »

Dropout — метод решения проблемы переобучения в нейронных сетях - 1

Переобучение (overfitting) — одна из проблем глубоких нейронных сетей (Deep Neural Networks, DNN), состоящая в следующем: модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к обучающим примерам, вместо того чтобы учиться классифицировать примеры, не участвовавшие в обучении (теряя способность к обобщению). За последние годы было предложено множество решений проблемы переобучения, но одно из них превзошло все остальные, благодаря своей простоте и прекрасным практическим результатам; это решение — Dropout (в русскоязычных источниках — “метод прореживания”, “метод исключения” или просто “дропаут”).
Читать полностью »

Обзор исследований в области глубокого обучения: обработка естественных языков - 1

Это третья статья из серии “Обзор исследований в области глубокого обучения” (Deep Learning Research Review) студента Калифорнийского университета в Лос-Анджелесе Адита Дешпанда (Adit Deshpande). Каждые две недели Адит публикует обзор и толкование исследований в определенной области глубинного обучения. В этот раз он сосредоточил свое внимание на применении глубокого обучения для обработки текстов на естественном языке.
Читать полностью »

Отключив сборщик мусора Python (GC), который освобождает память, отслеживая и удаляя неиспользуемые данные, Instagram стал работать на 10% быстрее. Да-да, вы не ослышались! Отключив сборщик мусора, можно сократить объем потребляемой памяти и повысить эффективность работы кэша процессора. Хотите узнать, почему так происходит? Тогда пристегните ремни!
О том, как в Instagram отключили сборщик мусора Python и начали жить - 1
Читать полностью »

До:

Алгоритм Джонкера-Волгенанта + t-SNE=супер-сила - 1

После:

Алгоритм Джонкера-Волгенанта + t-SNE=супер-сила - 2

Заинтригованы? Но обо всем по порядку.

t-SNE

t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать полностью »

Библиотека Google Benchmark - 1

Не так давно я писал о C++ библиотеках для микробенчмаркинга. Я рассказал о трех библиотеках: Nonius, Hayai и Celero. Но в действительности я хотел поговорить о четвертой. Мой Windows тогда не поддерживал Google Benchmark library, так что я не мог ее протестировать. К счастью, из комментариев к прошлому посту я узнал, что теперь библиотека доступна в Visual Studio!

Давайте посмотрим, как можно ее использовать.
Читать полностью »

image

Еще в январе 2012 Расс Кокс опубликовал замечательный блог-пост, объясняющий работу Google Code Search с помощью триграммного индекса.

К этому времени уже вышли первые версии моей собственной системы поиска по исходному коду под названием livegrep, с другим метод индексации; я писал эту систему независимо от Google, с помощью нескольких друзей. В этой статье я хотел бы представить немного запоздалое объяснение механизма ее работы.
Читать полностью »

В одном из прежних постов я рассказывал, как реализовать «простейшую в мире lock-free хеш-таблицу» на C++. Она была настолько проста, что было невозможно удалять из нее записи или менять ее размерность. С тех пор прошло несколько лет, и не так давно я написал несколько многопоточных ассоциативных массивов без таких ограничений. Их можно найти в моем проекте Junction на GitHub.

Junction содержит несколько многопоточных реализаций интерфейса map – даже «самая простая в мире» среди них, под названием ConcurrentMap_Crude. Для краткости будем называть ее Crude map. В этом посте я объясню разницу между Crude map и Linear map из библиотеки Junction. Linear — самый простой map в Junction, поддерживающий и изменение размера, и удаление.

Можете ознакомиться с объяснением того, как работает Crude map, в первоначальном посте. Если коротко, то она основана на открытой адресации и линейном пробировании. Это значит, что она по сути является большим массивом ключей и значений, использующим линейный поиск. Во время добавления или поиска заданного ключа мы вычисляем хеш от ключа, чтобы определить, с какого места начать поиск. Добавление и поиск данных возможны в многопоточном режиме.

Что такое Resizable Concurrent Map - 1
Читать полностью »