Рубрика «indexing»

Дружим ORDER BY с индексами - 1

Привет!

Я потихоньку перевожу статьи Маркуса Винанда из блога use the index luke.

Первой статьей в цикле был манифест Маркуса о важности использования безофсетной пагинации на ключах. Мы рассмотрели всего один пример, как этот подход работает на практике. В этой и следующих статьях я буду обосновывать такой подход — с графиками и примерами, как все любят. Читать полностью »

In the previous articles we discussed PostgreSQL indexing engine, the interface of access methods, and the following methods: hash indexes, B-trees, GiST, SP-GiST, GIN, and RUM. The topic of this article is BRIN indexes.

BRIN

General concept

Unlike indexes with which we've already got acquainted, the idea of BRIN is to avoid looking through definitely unsuited rows rather than quickly find the matching ones. This is always an inaccurate index: it does not contain TIDs of table rows at all.

Simplistically, BRIN works fine for columns where values correlate with their physical location in the table. In other words, if a query without ORDER BY clause returns the column values virtually in the increasing or decreasing order (and there are no indexes on that column).

This access method was created in scope of Axle, the European project for extremely large analytical databases, with an eye on tables that are several terabyte or dozens of terabytes large. An important feature of BRIN that enables us to create indexes on such tables is a small size and minimal overhead costs of maintenance.

This works as follows. The table is split into ranges that are several pages large (or several blocks large, which is the same) — hence the name: Block Range Index, BRIN. The index stores summary information on the data in each range. As a rule, this is the minimal and maximal values, but it happens to be different, as shown further. Assume that a query is performed that contains the condition for a column; if the sought values do not get into the interval, the whole range can be skipped; but if they do get, all rows in all blocks will have to be looked through to choose the matching ones among them.

It will not be a mistake to treat BRIN not as an index, but as an accelerator of sequential scan. We can regard BRIN as an alternative to partitioning if we consider each range as a «virtual» partition.

Now let's discuss the structure of the index in more detail.
Читать полностью »

We have already got acquainted with PostgreSQL indexing engine and the interface of access methods and discussed hash indexes, B-trees, as well as GiST and SP-GiST indexes. And this article will feature GIN index.

GIN

«Gin?.. Gin is, it seems, such an American liquor?..»
«I'm not a drink, oh, inquisitive boy!» again the old man flared up, again he realized himself and again took himself in hand. «I am not a drink, but a powerful and undaunted spirit, and there is no such magic in the world that I would not be able to do.»

— Lazar Lagin, «Old Khottabych».

Gin stands for Generalized Inverted Index and should be considered as a genie, not a drink.
README
Читать полностью »

Interface

In the first article, we've mentioned that an access method must provide information about itself. Let's look into the structure of the access method interface.

Properties

All properties of access methods are stored in the «pg_am» table («am» stands for access method). We can also get a list of available methods from this same table:

postgres=# select amname from pg_am;
 amname
--------
 btree
 hash
 gist
 gin
 spgist
 brin
(6 rows)

Although sequential scan can rightfully be referred to access methods, it is not on this list for historical reasons.

In PostgreSQL versions 9.5 and lower, each property was represented with a separate field of the «pg_am» table. Starting with version 9.6, properties are queried with special functions and are separated into several layers:

  • Access method properties — «pg_indexam_has_property»
  • Properties of a specific index — «pg_index_has_property»
  • Properties of individual columns of the index — «pg_index_column_has_property»

The access method layer and index layer are separated with an eye towards the future: as of now, all indexes based on one access method will always have the same properties.
Читать полностью »

Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и все основные методы доступа, как то: хеш-индексы, B-деревья, GiST, SP-GiST и GIN. А в этой части посмотрим на превращение джина в ром.

RUM

Хоть авторы и утверждают, что джин — могущественный дух, но тема напитков все-таки победила: GIN следующего поколения назвали RUM.

Этот метод доступа развивает идею, заложенную в GIN, и позволяет выполнять полнотекстовый поиск еще быстрее. Это единственный метод в этой серии статей, который не входит в стандартную поставку PostgreSQL и является сторонним расширением. Есть несколько вариантов его установки:

  • Взять пакет yum или apt из репозитория PGDG. Например, если вы ставили PostgreSQL из пакета postgresql-10, то поставьте еще postgresql-10-rum.
  • Самостоятельно собрать и установить из исходных кодов на github (инструкция там же).
  • Пользоваться в составе Postgres Pro Enterprise (или хотя бы читать оттуда документацию).

Ограничения GIN

Какие ограничения индекса GIN позволяет преодолеть RUM?

Во-первых, тип данных tsvector, помимо самих лексем, содержит информацию об их позициях внутри документа. В GIN-индексе, как мы видели в прошлый раз, эта информация не сохраняются. Из-за этого операции фразового поиска, появившиеся в версии 9.6, обслуживается GIN-индексом неэффективно и вынуждены обращаться к исходным данным для перепроверки.

Во-вторых, поисковые системы обычно возвращают результаты в порядке релевантности (что бы это ни означало). Для этого можно пользоваться функциями ранжирования ts_rank и ts_rank_cd, но их приходится вычислять для каждой строки результата, что, конечно, медленно.

Метод доступа RUM в первом приближении можно рассматривать как GIN, в который добавлена позиционная информация, и который поддерживает выдачу результата в нужном порядке (аналогично тому, как GiST умеет выдавать ближайших соседей). Пойдем по порядку.

Читать полностью »

Мы уже познакомились с механизмом индексирования PostgreSQL и с интерфейсом методов доступа, и рассмотрели хеш-индексы, B-деревья, индексы GiST и SP-GiST. А в этой части займемся индексом GIN.

GIN

— Джин?.. Джин — это, кажется, такой американский спиртной напиток?..
— Не напиток я, о пытливый отрок! — снова вспылил старичок, снова спохватился и снова взял себя в руки. — Не напиток я, а могущественный и неустрашимый дух, и нет в мире такого волшебства, которое было бы мне не по силам.

Лазарь Лагин, «Старик Хоттабыч».

Gin stands for Generalized Inverted Index and should be considered as a genie, not a drink.

README

Общая идея

GIN расшифровывается как Generalized Inverted Index — это так называемый обратный индекс. Он работает с типами данных, значения которых не являются атомарными, а состоят из элементов. При этом индексируются не сами значения, а отдельные элементы; каждый элемент ссылается на те значения, в которых он встречается.

Хорошая аналогия для этого метода — алфавитный указатель в конце книги, где для каждого термина приведен список страниц, где этот термин упоминается. Как и указатель в книге, индексный метод должен обеспечивать быстрый поиск проиндексированных элементов. Для этого они хранятся в виде уже знакомого нам B-дерева (для него используется другая, более простая, реализация, но это не существенно). К каждому элементу привязан упорядоченный набор ссылок на строки таблицы, содержащие значения с этим элементом. Для выборки данных упорядоченность не принципиальна (порядок сортировки TID-ов не несет в себе особого смысла), но она важна с точки зрения внутреннего устройства индекса.

Читать полностью »

Мы уже рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа и три метода: хеш-индекс, B-дерево и GiST. В этой части речь пойдет о SP-GiST.

SP-GiST

Вначале немного о названии. Слово «GiST» намекает на определенную схожесть с одноименным методом. Схожесть действительно есть: и тот, и другой — generalized search trees, обобщенные деревья поиска, предоставляющие каркас для построения разных методов доступа.

«SP» расшифровывается как space partitioning, разбиение пространства. В роли пространства часто выступает именно то, что мы и привыкли называть пространством — например, двумерная плоскость. Но, как мы увидим, имеется в виду любое пространство поиска, по сути произвольная область значений.

SP-GiST подходит для структур, в которых пространство рекурсивно разбивается на непересекающиеся области. В этот класс входят деревья квадрантов (quadtree), k-мерные деревья (k-D tree), префиксные деревья (trie).

Читать полностью »

В прошлые разы мы рассмотрели механизм индексирования PostgreSQL, интерфейс методов доступа, и два метода: хеш-индекс и B-дерево. В этой части займемся индексами GiST.

GiST

GiST — сокращение от «generalized search tree». Это сбалансированное дерево поиска, точно так же, как и рассмотренный ранее b-tree.

В чем же разница? Индекс b-tree жестко привязан к семантике сравнения: поддержка операторов «больше», «меньше», «равно» — это все, на что он способен (зато способен очень хорошо!). Но в современных базах хранятся и такие типы данных, для которых эти операторы просто не имеют смысла: геоданные, текстовые документы, картинки…

Тут на помощь и приходит индексный метод GiST. Он позволяет задать принцип распределения данных произвольного типа по сбалансированному дереву, и метод использования этого представления для доступа по некоторому оператору. Например, в GiST-индекс можно «уложить» R-дерево для пространственных данных с поддержкой операторов взаимного расположения (находится слева, справа; содержит и т. п.), или RD-дерево для множеств с поддержкой операторов пересечения или вхождения.

За счет расширяемости в PostgreSQL вполне можно создать совершенно новый метод доступа с нуля: для этого надо реализовать интерфейс с механизмом индексирования. Но это требует продумывания не только логики индексации, но и страничной структуры, эффективной реализации блокировок, поддержки журнала упреждающей записи — что подразумевает очень высокую квалификацию разработчика и большую трудоемкость. GiST упрощает задачу, беря на себя низкоуровневые проблемы и предоставляя свой собственный интерфейс: несколько функций, относящихся не к технической сфере, а к прикладной области. В этом смысле можно говорить о том, что GiST является каркасом для построения новых методов доступа.
Читать полностью »

Мы уже рассмотрели механизм индексирования PostgreSQL и интерфейс методов доступа, а также один из методов доступа — хеш-индекс. Сейчас поговорим о самом традиционном и используемом индексе — B-дереве. Глава получилась большой, запасайтесь терпением.

Btree

Устройство

Индекс btree, он же B-дерево, пригоден для данных, которые можно отсортировать. Иными словами, для типа данных должны быть определены операторы «больше», «больше или равно», «меньше», «меньше или равно» и «равно». Заметьте, что одни и те же данные иногда можно сортировать разными способами, что возвращает нас к концепции семейства операторов.
Читать полностью »

В первой статье мы рассмотрели механизм индексирования PostgreSQL, во второй — интерфейс методов доступа, и теперь готовы к разговору о конкретных типах индексов. Начнем с хеш-индекса.

Hash

Устройство

Общая теория

Многие современные языки программирования включают хеш-таблицы в качестве базового типа данных. Внешне это выглядит, как обычный массив, но в качестве индекса используется не целое число, а любой тип данных (например, строка). Хеш-индекс в PostgreSQL устроен похожим образом. Как это работает?

Как правило, типы данных имеют очень большие диапазоны допустимых значений: сколько различных строк можно теоретически представить в столбце типа text? В то же время, сколько разных значений реально хранится в текстовом столбце какой-нибудь таблицы? Обычно не так много.

Идея хеширования состоит в том, чтобы значению любого типа данных сопоставить некоторое небольшое число (от 0 до N−1, всего N значений). Такое сопоставление называют хеш-функцией. Полученное число можно использовать как индекс обычного массива, куда и складывать ссылки на строки таблицы (TID). Элементы такого массива называют корзинами хеш-таблицы — в одной корзине могут лежать несколько TID-ов, если одно и то же проиндексированное значение встречается в разных строках.

Хеш-функция тем лучше, чем равномернее она распределяет исходные значения по корзинам. Но даже хорошая функция будет иногда давать одинаковый результат для разных входных значений — это называется коллизией. Так что в одной корзине могут оказаться TID-ы, соответствующие разным ключам, и поэтому полученные из индекса TID-ы необходимо перепроверять.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js