Рубрика «машинное обучение»

Tensor Flow — фреймворк для построения и работы с нейросетями от компании Google. Позволяет абстрагироваться от внутренних деталей машинного обучения и сосредоточиться непосредственно на решении своей задачи. Очень мощная вещь, позволяет создавать, обучать и использовать нейронные сети любого известного типа. Не нашел на Хабре ни одного толкового текста на эту тему, поэтому пишу свой. Ниже будет описана реализация решения задачи про грибы с помощью библиотеки Tensor Flow. Кстати, алгоритм, описанный ниже, подходит для предсказаний практически в любой области. Например, вероятности рака у человека в будущем или карт у соперника в покере.Читать полностью »

Разработчики из исследовательского проекта Magenta (подразделение Google) представили синтезатор с открытым исходным кодом NSynth Super. В его основе лежит система искусственного интеллекта, которая миксует несколько предварительно загруженных сэмплов (например, звучание гитары и пианино) в новый звук с уникальными характеристиками.

Подробнее о системе NSynth Super и других алгоритмах-композиторах расскажем далее.

«Машинный звук»: синтезаторы на базе нейросетей - 1Читать полностью »

15 Одновременная оценка нескольких идей во время анализа ошибок

У вашей команды есть несколько идей, как улучшить определитель кошек в вашем приложении:

  • Решить проблему с тем, что ваш алгоритм относит собак к кошкам
  • Решить проблему с тем, что ваш алгоритм распознает больших диких кошек (львов, пантер, т. п.) как домашних
  • Улучшить работу системы на нечетких изображениях

Можно оценить все эти идеи одновременно. Обычно я создаю специальную таблицу и заполняю ее для примерно 100 случаев ошибочной классификации валидационной (dev) выборки. Так же я делаю краткие комментарии, которые могут помочь мне вспомнить конкретные примеры в последствие. Для иллюстрации этого процесса, давайте рассмотрим сводную таблицу, которую вы могли бы создать из небольшого набора примеров вашей валидационной (dev) выборки

Читать полностью »

Привет! Представляю вашему вниманию перевод статьи "Detecting Sarcasm with Deep Convolutional Neural Networks" автора Elvis Saravia.

Обнаружение сарказма с помощью сверточных нейросетей - 1

Одна из ключевых проблем обработки естественного языка — обнаружение сарказма. Обнаружение сарказма важно в других областях, таких как эмоциональные вычисления и анализ настроений, поскольку это может отражать полярность предложения.

В этой статье показано, как обнаружить сарказм и также приведена ссылка на нейросетевой детектор сарказма.
Читать полностью »

Представляете ли вы, сколько нормативных документов в час приходится просматривать корпоративному юристу и к каким последствиям может привести его невнимательность? Бедолага юрист должен вчитываться в каждый договор, тем более, если для него нет типового шаблона, что случается часто.

Глядя в уставшие глаза нашего корпоративного юриста, мы решили создать сервис, который будет находить проблемы в документах и сигналить о них задремавшему юристу. В результате мы создали решение с агрегацией знаний по некоторой базе договоров и подсказками юристам, на что следует обратить особое внимание. Конечно, не обошлось без магии. Математической магии под названием Anomaly Detection.

В основном, подходы Anomaly Detection применяются для анализа поведения разнообразного оборудования для выявления отказов, или в банковском секторе для определения фрода. А мы попробовали применить эти алгоритмы для анализа юридических документов. Следуйте под кат, чтобы узнать, как мы это делали.

Я, РобоЛойер. Ищу аномалии в документах - 1

Читать полностью »

image Сейчас в прессе часто встречаются новости вида “AI научился писать в стиле автора Х”, или “ML создает искусство”. Посмотрев на это, мы решили – было бы здорово, если эти громкие заявления можно было бы проверить на деле.

Можно ли устроить борьбу ботов по написанию стихотворений? Можно ли сделать из этого понятную и воспроизводимую соревновательную историю? Теперь можно точно сказать, что это возможно. А о том, как написать свой первый алгоритм по генерации стихотворений, читайте дальше.
Читать полностью »

Некоторое время назад в моей ленте в фейсбуке всплыла ссылка на книгу Эндрю Ына (Andrew Ng) "Machine Learning Yearning", которую можно перевести, как "Страсть к машинному обучению" или "Жажда машинного обучения".

image<img src="<img src="https://habrastorage.org/webt/ds/rc/ct/dsrcctfottkedkf7o1hxbqsoamq.png" />" alt="image"/>

Людям, интересующимся машинным обучением или работающим в этой сфере представлять Эндрю не нужно. Для непосвященных достаточно сказать, что он является звездой мировой величины в области искусственного интеллекта. Ученый, инженер, предприниматель, один из основателей Coursera. Автор отличного курса по введению в машинное обучение и курсов, составляющих специализацию "Глубокое обучение" (Deep Learning).

Читать полностью »

Привет! Меня зовут Денис Кирьянов, я работаю в Сбербанке и занимаюсь проблемами обработки естественного языка (NLP). Однажды нам понадобилось выбрать синтаксический парсер для работы с русским языком. Для этого мы углубились в дебри морфологии и токенизации, протестировали разные варианты и оценили их применение. Делимся опытом в этом посте.

Изучаем синтаксические парсеры для русского языка - 1
Читать полностью »

Время пополнять копилку хороших русскоязычных докладов по Machine Learning! Копилка сама не пополнится!

В этот раз мы познакомимся с увлекательным рассказом Андрея Боярова про распознавание сцен. Андрей — программист-исследователь, занимающийся машинным зрением в компании Mail.Ru Group.

Распознавание сцен — одна из активно применяемых областей машинного зрения. Задача эта посложнее, чем изученное распознавание объектов: сцена — более комплексное и менее формализованное понятие, выделить признаки труднее. Из распознавания сцен вытекает задача распознавания достопримечательностей: нужно выделить известные места на фото, обеспечив низкий уровень ложных срабатываний.

Это 30 минут видео с конференции Smart Data 2017. Видео удобно смотреть дома и в дороге. Для тех же, кто не готов столько сидеть у экрана, или кому удобней воспринимать информацию в текстовом виде, мы прикладываем полную текстовую расшифровку, оформленную в виде хабростатьи.

Читать полностью »

image

1 сентября Mail.Ru Group и сообщество Open Data Science проведут крупнейший митап Moscow Data Science.

Откроем новый учебный и рабочий год целым днём секций и нетворкинга!
Читать полностью »