Рубрика «машинное обучение»

Содержание

В прошлой части мы уже обсуждали, что такое скрытые переменные, взглянули на их распределение, а также поняли, что из распределения скрытых переменных в обычных автоэнкодерах сложно генерировать новые объекты. Для того чтобы можно было генерировать новые объекты, пространство скрытых переменных (latent variables) должно быть предсказуемым.

Вариационные автоэнкодеры (Variational Autoencoders) — это автоэнкодеры, которые учатся отображать объекты в заданное скрытое пространство и, соответственно, сэмплить из него. Поэтому вариационные автоэнкодеры относят также к семейству генеративных моделей.

Автоэнкодеры в Keras, Часть 3: Вариационные автоэнкодеры (VAE) - 1
Читать полностью »

Несмотря на всеобщий хайп вокруг машинного обучения и нейронных сетей, несомненно, сейчас на них действительно стоит обратить особое внимание. Почему? Вот ключевые причины:

  1. Железо стало гораздо быстрее и можно легко обсчитывать модели на GPU
  2. Появилась куча неплохих бесплатных фреймворков для нейросетей
  3. Одурманенные предыдущим хайпом, компании стали собирать бигдату — теперь есть на чем тренироваться!
  4. Нейронки в некоторых областях приблизились к человеку, а в некоторых — уже превзошли в решении ряда задач (где тут лопаты продают, надо срочно бункер рыть)

Но управлять этим, по прежнему, сложно: много математики, высшей и беспощадной. И либо ты из физмата, либо сиди и решай 2-3 тысячи задачек в течении двух-трех лет, чтобы понимать, о чем идет речь. Разобраться по дороге на собеседование в электричке, полистав книжку «Программирование на PHP/JavaScript за 3 дня» — не получится, ну никак, и списать никто не даст (даже за ящик водки).

Как нам помогают нейронные сети в технической поддержке - 1

Вам не дадут «списать» модель нейросети даже за ящик водки. Часто именно на Ваших данных публично доступная модель работает внезапно плохо и придется разбираться в тервере и матане

Но зато, ууУУ, овладев основами, можно строить разные предсказательные модели, реализующие интересные и мощные алгоритмы. И вот тут язык начинает заворачиваться и выпадать изо рта, цепляя левый глаз…
Читать полностью »

Предлагаю продолжить добрую традицию, которая началась в пятницу чуть больше месяца назад. Тогда я поделилась с вами вводной статьёй о том, для чего нужно машинное обучение в страховой компании и как проверялась реалистичность самой идеи. Сегодня будет её продолжение, в котором начинается самое интересное — тестирование алгоритмов.

Машинное обучение для страховой компании: Исследуем алгоритмы - 1
Читать полностью »

LSTM – сети долгой краткосрочной памяти - 1

Рекуррентные нейронные сети

Люди не начинают думать с чистого листа каждую секунду. Читая этот пост, вы понимаете каждое слово, основываясь на понимании предыдущего слова. Мы не выбрасываем из головы все и не начинаем думать с нуля. Наши мысли обладают постоянством.

Традиционные нейронные сети не обладают этим свойством, и в этом их главный недостаток. Представим, например, что мы хотим классифицировать события, происходящие в фильме. Непонятно, как традиционная нейронная сеть могла бы использовать рассуждения о предыдущих событиях фильма, чтобы получить информацию о последующих.

Решить эту проблемы помогают рекуррентые нейронные сети (Recurrent Neural Networks, RNN). Это сети, содержащие обратные связи и позволяющие сохранять информацию.
Читать полностью »

Доброго времени суток! Пора вновь вернуться к задачам оптимизации. На этот раз мы займемся линейной регрессией и разберемся, кто же такие коты — только пушистые домашние мерзавцы животные или еще и неплохой инструмент для решения прикладных задач.

Умеют ли коты строить регрессию? - 1

Читать полностью »

Возможности умных машин - 1

На нашем канале мы запустили новую рубрику «Охотники за будущим» (вот видео). Так же мы решили эксперементально выпустить расшифровку этого видео, максимально адаптировав её для формата чтения. Добро пожаловать под кат.Читать полностью »

Отчет с Moscow Data Science Meetup 31 мая - 1

31 мая Moscow Data Science Meetup собрал в нашем офисе более 200 участников. На встрече мы поговорили о градиентном бустинге, бейзлайне на ConvAI.io и разобрали кейс, получивший 7-е место из 419 команд на конкурсе Dstl Satellite Imagery Feature Detection. Предлагаем вашему вниманию видеозаписи и презентации трёх докладов, представленных на встрече.

Читать полностью »

Пока все обсуждают ИИ в мире Pacman, мы начнем делать свой ИИ в Minecraft с фреймворком Malmo от Microsoft Research. Pacman у нас тоже появится. :) Если вы любите кубический мир, или вам хотелось бы начать изучать искусственный интеллект, или у вас есть дети, с которыми вы не можете найти общие увлечения, или же вас просто заинтересовала тема – прошу под кат.

Программируем в мире Minecraft - 1
Читать полностью »

image Всем привет! Это уже одиннадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

В сегодняшнем выпуске вы найдёте интересные материалы, касающиеся устройства Python, машинного обучения, перехода на Python 3, Django и многого другого. Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

image

24 июня мы собираем специалистов по Data Science в нашем офисе, чтобы обменяться опытом в создании рекомендательных сервисов. На встрече мы подведём итоги проходившего на площадке Dataring.ru конкурса Avito на построение рекомендательной системы для объявлений: наградим победителей и попросим их подробнее рассказать о своих решениях. Кроме того, в программе интересные доклады от представителей Яндекс.Дзена, OZON.ru и, конечно же, Avito. Подробности под катом!
Читать полностью »