Рубрика «математика»

Принцип наименьшего действия. Часть 2 - 1

В прошлый раз мы кратко рассмотрели один из самых замечательных физических принципов — принцип наименьшего действия, и остановились на примере, который, казалось бы, ему противоречит. В данной статье мы разберемся с этим принципом немного подробнее и посмотрим, что происходит в данном примере.
Читать полностью »

Привет habr.

На geektimes habr было уже несколько статей про abc-гипотезу (например в 2013 и в 2018 годах). Сама история про теорему, которую сначала много лет не могут доказать, а потом столько же лет не могут проверить, безусловно заслуживает как минимум, художественного фильма. Но в тени этой чудесной истории, сама теорема рассматривается черезчур поверхностно, хотя она не менее интересна. Уже хотя бы тем, что abc-гипотеза — одна из немногих нерешенных проблем современной науки, постановку задачи которой сможет понять даже пятиклассник. Если же эта гипотеза действительно верна, то из нее легко следует доказательство других важных теорем, например доказательство теоремы Ферма.

Не претендуя на лавры Мотидзуки, я тоже решил попробовать решил проверить с помощью компьютера, насколько выполняются обещанные в гипотезе равенства. Собственно, почему бы нет — современные процессоры ведь не только для того чтобы в игры играть — почему бы не использовать компьютер по своему основному (compute — вычислять) предназначению…

Кому интересно что получилось, прошу под кат.
Читать полностью »

Иллюзия обмана: визуально-оптическая иллюзия на базе ретропрогнозирования - 1

Мозг человека очень часто называют самым сложным биологическим компьютером в мире. Ученые со всего мира продолжают изучать этот невероятно загадочный орган, открывая все новые и новые его свойства, функции, возможности и прочее. Как мы знаем, многие науки, а следовательно и их исследования, связаны друг с другом. Посему изучение мозга человека позволяет совершенствовать и технологии не связанные с его анатомией. Сегодня мы рассмотрим новое исследование мозга, в котором ученые испытывают новые способы его обмана. Мы воспринимаем окружающий нас мир за счет информации, обрабатываемой мозгом. Все, что мы видим, слышим, обоняем, пробуем на вкус и осязаем состоит из определенного набора сигналов, которые наши органы чувств воспринимают, а мозг обрабатывает. Но что если эти сигналы будут ложными, а точнее их не будет вообще, а мозг будет уверен в том, что они есть? Именно об этом и пойдет речь в сегодняшнем исследовании. Поехали.Читать полностью »

Доступно о кватернионах и их преимуществах - 1

От переводчика: ровно 175 лет и 3 дня назад были изобретены кватернионы. В честь этой круглой даты я решил подобрать материал, объясняющий эту концепцию понятным языком.

Концепция кватернионов была придумана ирландским математиком сэром Уильямом Роуэном Гамильтоном в понедельник 16 октября 1843 года в Дублине, Ирландия. Гамильтон со своей женой шёл в Ирландскую королевскую академию, и переходя через Королевский канал по мосту Брум Бридж, он сделал потрясающее открытие, которое сразу же нацарапал на камне моста.

$i^2=j^2=k^2=ijk=-1$

Доступно о кватернионах и их преимуществах - 3

Памятная табличка на мосту Брум Бридж через Королевский канал в честь открытия фундаментальной формулы умножения кватернионов.

В этой статье я постараюсь объяснить концепцию кватернионов простым для понимания образом. Я объясню, как можно визуализировать кватернион, а также расскажу о разных операциях, которые можно выполнять с кватернионами. Кроме того, я сравню использование матриц, углов Эйлера и кватернионов, а затем попытаюсь объяснить, когда стоит использовать кватернионы вместо углов Эйлера или матриц, а когда этого делать не нужно.
Читать полностью »

image
*фарм — (от англ. farming) — долгое и занудное повторение определенных игровых действий с определенной целью (получение опыта, добыча ресурсов и др.).

Введение

Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме — ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.

Читать полностью »

Суть задачи

В процессе медицинской диагностики может возникнуть необходимость исследовать сосуды пациента. Такое исследование называется ангиографией. С появлением томографов в дополнение к классической ангиографии появились методы МРТ и КТ ангиографии, которые в отличие от традиционной ангиографии, дающей только плоскую картинку в одной проекции, позволяют получить полное трехмерное представление сосудов. Для проведения таких исследований пациенту в кровь вводится контраст — специальное вещество, делающее сосуды на снимках более яркими. В зависимости от предполагаемого диагноза, врач или оценивает общую картину, или пытается найти конкретные участки сосудов, в которых возникли проблемы. Если участок сосуда сужен и пропускает меньше крови, чем должен, то это место называется стенозом.

Решение проблемы обнаружения центральной линии сосуда - 1

Одна из задач врача — найти стенозы и оценить, насколько они опасны. Задача же разработчика, как обычно, облегчить работу конечного пользователя. Для этого необходимо построить полную 3D модель стенок сосуда и провести их первичный анализ. Это является большой и интересной задачей, однако, в её основе лежит более простая и известная проблема — построение центральной линии сосуда.
Читать полностью »

При попытке представить себе галлюцинации, вызванные наркотическими веществами, на ум сразу приходят закрученные, спиральные психоделические формы, напоминающие туннельное зрение. Но подобные геометрические структуры могут вызывать не только галлюционгенные наркотики вроде LSD, каннабиса или мескалина. Люди рассказывали о возникновении таких видений в момент, когда они находились при смерти, во время таких болезненных состояний, как эпилепсия и шизофрения, в результате сенсорной депривации, или даже после простого надавливания на глазные яблоки. Подобные геометрические галлюцинации так распространены, что за последнее столетие учёные начали задаваться вопросом – не могут ли они рассказать нам что-то фундаментальное о строении нашего мозга. И, судя по всему, так и есть.

Раскручивая спираль: математика и галлюцинации - 1

Константы формы, созданные на компьютере. Два верхних изображения имитируют воронку и спираль, возникающие после приёма LSD. Нижнее левое – соты, создаваемые марихуаной. Нижнее правое – паутина.
Читать полностью »

Этой лекции не было в расписании, но ее пришлось добавить, чтобы не возникало окна между занятиями. Лекция, в сущности, посвящена тому, как мы знаем то, что мы знаем, если, конечно, мы и в самом деле это знаем. Эта тема стара как мир – она обсуждается последние 4000 лет, если не дольше. В философии для ее обозначения создан специальный термин – эпистемология, или наука о знании.

Я бы хотел начать с первобытных племен далекого прошлого. Стоит отметить, что в каждом из них существовали миф о сотворении мира. По одному древнеяпонскому поверью, некто взболтал грязь, из брызг которой появились острова. Подобные мифы были и у других народов: например, израильтяне верили, что Бог шесть дней творил мир, после чего устал и закончил творение. Все эти мифы схожи – хотя сюжеты их довольно разнообразны, все они пытаются объяснить, почему существует этот мир. Я буду называть такой подход теологическим, поскольку он не предполагает объяснений, кроме как «это произошло по воле богов; они сделали то, что посчитали нужным, и так появился мир».

В районе VI века до н. э. философы античной Греции начали задавать более конкретные вопросы – из чего состоит этот мир, каковы его части, а также попытались подойти к ним скорее рационально, нежели теологически. Как известно, они выделяли стихии: землю, огонь, воду и воздух; у них было еще множество других понятий и убеждений, и медленно, но верно все это преобразовалось в наши современные представления о том, что мы знаем. Тем не менее, тема эта озадачивала людей во все времена, и даже древние греки задавались вопросом, как они знали то, что они знали.
Читать полностью »

image Можете представить себе что-нибудь огромнее Вселенной, но в то же время спокойно помещающееся в вашей голове? Что же это такое? Бесконечность! Юджиния Ченг отправляет нас в потрясающее математическое путешествие, чтобы разобраться в самых загадочных математических абстракциях. Почему некоторые числа невозможно сосчитать? Почему бесконечность + 1 не то же самое, что 1+ бесконечность? Мы узнаем о парадоксе «Гранд-отеля», сможем накормить 7 миллиардов человек с помощью шахматной доски, и даже получим бесконечное количество печенек из маленького (конечного) кусочка теста. Всё это позволит понять и полюбить такую странную и загадочную абстрактную математику. Невероятная книга об огромной и бесконечной Вселенной увлекает и интригует, показывая как один маленький математический символ вмещает в себя огромную идею.

Читать полностью »

Подъехала третья часть из серии статей по функциональному программированию. Сегодня мы расскажем обо всех типах этой парадигмы и на примерах покажем их использование. Подробнее о примитивных типах, обобщенных типах и многом другом под катом!

Функциональное мышление. Часть 3 - 1Читать полностью »