Рубрика «математика»

Введение

Публикации по методу Фурье условно можно разделить на две группы. Первая группа так называемых познавательных публикаций, например, [1,2].

Вторая группа публикаций касается применения преобразований Фурье в технике, например, при спектральном анализе [3,4].

Ни в коем случае не умоляя достоинства этих групп публикации стоит признать, что без классификации, или хотя бы попытки осуществить такую классификацию, получить системное представление о методе Фурье, по моему мнению, затруднительно.

Задачи публикации

Провести классификацию методов преобразования Фурье на примерах их программной реализации средствами Python. При этом для облегчения чтения использовать формулы только в программном коде с соответствующими пояснениями.

Гармонический анализ и синтез

Гармоническим анализом называют разложение функции f(t), заданной на отрезке [0, Т] в ряд Фурье или в вычислении коэффициентов Фурье по формулам.

Гармоническим синтезом называют получение колебаний сложной формы путем суммирования их гармонических составляющих (гармоник).

Программная реализация

#!/usr/bin/python
# -*- coding: utf-8 -*
from scipy.integrate import quad # модуль для интегрирования
import matplotlib.pyplot as plt # модуль для графиков
import numpy as np # модуль для операций со списками и массивами
T=np.pi; w=2*np.pi/T# период и круговая частота
def func(t):# анализируемая функция
         if t<np.pi:
                  p=np.cos(t)
         else:
                  p=-np.cos(t)
         return p
def func_1(t,k,w):# функция для расчёта коэффициента a[k] 
         if t<np.pi:
                  z=np.cos(t)*np.cos(w*k*t)
         else:
                  z=-np.cos(t)*np.cos(w*k*t)
         return z
def func_2(t,k,w):#функция для расчёта коэффициента b[k] 
         if t<np.pi:
                  y=np.cos(t)*np.sin(w*k*t)
         else:
                  y=-np.cos(t)*np.sin(w*k*t)
         return y
a=[];b=[];c=4;g=[];m=np.arange(0,c,1);q=np.arange(0,2*np.pi,0.01)# подготовка списков для численного анализа
a=[round(2*quad(func_1, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для a[k], k -номер гармоники 
b=[round(2*quad(func_2, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для b[k], k -номер гармоники
F1=[a[1]*np.cos(w*1*t)+b[1]*np.sin(w*1*t) for t in q]#функции для гармоник
F2=[a[2]*np.cos(w*2*t)+b[2]*np.sin(w*2*t) for t in q]
F3=[a[3]*np.cos(w*3*t)+b[3]*np.sin(w*3*t) for t in q]
plt.figure()
plt.title("Классический гармонический анализ функции n при t<pi  f(t)=cos(t)  при t>=pi  f(t)=-cos(t)")
plt.plot(q, F1, label='1 гармоника')
plt.plot(q, F2 , label='2 гармоника')
plt.plot(q, F3, label='3 гармоника')
plt.xlabel("Время t")
plt.ylabel("Амплитуда А")
plt.legend(loc='best')
plt.grid(True)
F=np.array(a[0]/2)+np.array([0*t for t in q-1])# подготовка массива для анализа с a[0]/2
for k in np.arange(1,c,1):
         F=F+np.array([a[k]*np.cos(w*k*t)+b[k]*np.sin(w*k*t) for t in q])# вычисление членов ряда Фурье
plt.figure()
P=[func(t) for t in q]
plt.title("Классический гармонический синтез")
plt.plot(q, P, label='f(t)')
plt.plot(q, F, label='F(t)')
plt.xlabel("Время t")
plt.ylabel("f(t),F(t)")
plt.legend(loc='best')
plt.grid(True)
plt.show()

Читать полностью »

Недавно, перед тем как написать про свои соображения о путях развития ИИ, решил посмотреть, что уже писали об ИИ на Хабре. В числе прочих наткнулся на статью с довольно сложным решением (через генетический алгоритм) широко известной задачи поиска метаграмм: дано два слова (существительных) одинаковой длины, нужно получить из первого второе, меняя только одну букву и получая при этом имеющее смысл слово.

Сложно ли сделать из мухи слона? - 1
Сальвадор Дали. Искушение св. Антония. 1946. (Фрагмент).
Бельгийский Королевский музей изящных искусств (Брюссель).

Читать полностью »

image

Привет!
С этого выпуска мы начинаем хорошую традицию: каждый месяц будет выходить набор рецензий на некоторые научные статьи от членов сообщества Open Data Science из канала #article_essence. Хотите получать их раньше всех — вступайте в сообщество ODS!
Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Читать полностью »

10 лет Computer Science клубу - 1

В этом году Computer Science клубу в Санкт-Петербурге исполняется 10 лет. С 2007 года в клубе проходят открытые лекции и курсы, где любой желающий может познакомиться с классическими результатами, современным положением дел и открытыми задачами в различных областях computer science. Вход на все лекции свободный, регистрация не требуется. Слайды и видеозаписи всех прошедших лекций доступны с сайта клуба.

Поздравить клуб с юбилеем приедут сотрудники следующих организаций: Академический университет, Математический институт Стеклова в Санкт-Петербурге, Санкт-Петербургский государственный университет, Яндекс, JetBrains, Montpellier University, Northwestern University, Toyota Technological Institute at Chicago, University of Bergen, University of California at San Diego, Yahoo Research. Они прочитают мини-курсы по следующим темам.

Читать полностью »

Редко когда кандидат проходит только одно техническое собеседование — обычно их несколько. Среди причин, почему человеку они могут даваться непросто, можно назвать и ту, что каждый раз приходится общаться с новыми людьми, думать о том, как они восприняли твой ответ, пытаться интерпретировать их реакцию. Мы решили попробовать использовать формат контеста, чтобы сократить количество итераций для всех участников процесса.

Блиц. Как попасть в Яндекс, минуя первое собеседование - 1

Для Блица мы выбрали исключительно алгоритмические задачи. Хотя для оценки раундов и применяется система ACM, в отличие от спортивного программирования все задания максимально приближены к тем, которые постоянно решают в продакшене Поиска. Те, кто решит успешно хотя бы четыре задачи из шести, могут считать, что прошли первый этап отбора в Яндекс. Почему алгоритмы? В процессе работы часто меняются задачи, проекты, языки программирования, платформы — те, кто владеет алгоритмами, всегда смогут перестроиться и быстро научиться новому. Типичная задача на собеседовании — составить алгоритм, доказать его корректность, предложить пути оптимизации.

Квалификацию можно пройти с 18 по 24 сентября включительно. В этом раунде вам нужно будет написать программы для решения шести задач. Можете использовать Java, C++, C# или Python. На всё про всё у вас будет четыре часа. В решающем раунде будут соревноваться те, кто справится как минимум с четырьмя квалификационными задачами. Финал пройдёт одновременно для всех участников — 30 сентября, с 12:00 до 16:00 по московскому времени. Итоги будут подведены 4 октября. Чтобы всем желающим было понятно, с чем они столкнутся на Блице, мы решили разобрать пару похожих задач на Хабре.

Читать полностью »

Редко когда кандидат проходит только одно техническое собеседование — обычно их несколько. Среди причин, почему человеку они могут даваться непросто, можно назвать и ту, что каждый раз приходится общаться с новыми людьми, думать о том, как они восприняли твой ответ, пытаться интерпретировать их реакцию. Мы решили попробовать использовать формат контеста, чтобы сократить количество итераций для всех участников процесса.

Яндекс.Блиц. Почему и какие алгоритмические задачи нужно уметь решать, работая в поиске - 1

Для Блица мы выбрали исключительно алгоритмические задачи. Хотя для оценки раундов и применяется система ACM, в отличие от спортивного программирования все задания максимально приближены к тем, которые постоянно решают в продакшене Поиска. Те, кто решит успешно хотя бы четыре задачи из шести, могут считать, что прошли первый этап отбора в Яндекс. Почему алгоритмы? В процессе работы часто меняются задачи, проекты, языки программирования, платформы — те, кто владеет алгоритмами, всегда смогут перестроиться и быстро научиться новому. Типичная задача на собеседовании — составить алгоритм, доказать его корректность, предложить пути оптимизации.

Квалификацию можно пройти с 18 по 24 сентября включительно. В этом раунде вам нужно будет написать программы для решения шести задач. Можете использовать Java, C++, C# или Python. На всё про всё у вас будет четыре часа. В решающем раунде будут соревноваться те, кто справится как минимум с четырьмя квалификационными задачами. Финал пройдёт одновременно для всех участников — 30 сентября, с 12:00 до 16:00 по московскому времени. Итоги будут подведены 4 октября. Чтобы всем желающим было понятно, с чем они столкнутся на Блице, мы решили разобрать пару похожих задач на Хабре.

Читать полностью »

Proof of concept: однотритный вычислитель

Это уже четвёртая статья, по мере готовности будет продолжение. Оглавление:

Вот так выглядит основная железка, о которой сегодня будет идти речь (больше перемычек богу перемычек!):

Считаем до трёх: четыре - 1
Читать полностью »

Вступление

  1. Моделирование транспортных потоков стало одной из лидирующих проблем в науке, чуть ли не с появления первых автомобилей. Считается, что родоначальником данной отрасли является учёный ещё из царской России Дубелир со своей книгой «Городские улицы и мостовые» (1912 год). За 100 лет непрерывных исследований выработалось много хороших моделей, которые помогают сегодня строить качественные и быстрые дороги. Но если Вы думаете, что не осталось нерешённых вопросов, Вы сильно ошибаетесь, ведь до сих пор светлые умы нашей планеты ломают головы над решениями задач, о которых иногда спрашивают даже дети. Например, как настроить светофор так, чтобы около него не образовывалась пробка?

Читать полностью »

image

В начале 90-х создание трёхмерного игрового движка означало, что вы заставите машину выполнять почти не свойственные ей задачи. Персональные компьютеры того времени предназначались для запуска текстовых процессоров и электронных таблиц, а не для 3D-вычислений со частотой 70 кадров в секунду. Серьёзным препятствием стало то, что, несмотря на свою мощь, ЦП не имел аппаратного устройства для вычислений с плавающей запятой. У программистов было только АЛУ, перемалывающее целые числа.

При написании книги Game Engine Black Book: Wolfenstein 3D я хотел наглядно показать, насколько был велики были проблемы при работе без плавающей запятой. Мои попытки разобраться в числах с плавающей запятой при помощи каноничных статей мозг воспринимал в штыки. Я начал искать другой способ. Что-нибудь, далёкое от $(-1)^S * 1.M * 2^{(E-127)}$ и их загадочных экспонент с мантиссами. Может быть, в виде рисунка, потому что их мой мозг воспринимает проще.

В результате я написал эту статью и решил добавить её в книгу. Не буду утверждать, что это моё изобретение, но пока мне не приходилось видеть такого объяснения чисел с плавающей запятой. Надеюсь, статья поможет тем, у кого, как и меня, аллергия на математические обозначения.
Читать полностью »

Нейросетевая игра в имитацию - 1 Здравствуйте, коллеги. В конце 1960-ых годов прошлого века Ричард Фейнман прочитал в Калтехе курс лекций по общей физике. Фейнман согласился прочитать свой курс ровно один раз. Университет понимал, что лекции станут историческим событием, взялся записывать все лекции и фотографировать все рисунки, которые Фейнман делал на доске. Может быть, именно после этого у университета осталась привычка фотографировать все доски, к которым прикасалась его рука. Фотография справа сделана в год смерти Фейнмана. В верхнем левом углу написано: "What I cannot create, I do not understand". Это говорили себе не только физики, но и биологи. В 2011 году, Крейгом Венером был создан первый в мире синтетический живой организм, т.е. ДНК этого организма создана человеком. Организм не очень большой, всего из одной клетки. Помимо всего того, что необходимо для воспроизводства программы жизнедеятельности, в ДНК были закодированы имена создателей, их электропочты, и цитата Ричарда Фейнмана (пусть и с ошибкой, ее кстати позже исправили). Хотите узнать, к чему эта прохладная тут? Приглашаю под кат, коллеги.

Читать полностью »