Рубрика «нейросети»

Нейросеть научили подделывать отпечатки пальцев - 1

Дактилоскопическая идентификация пользователей — один из относительно надежных способов определить личность человека. Конечно, лучше всего использовать его в совокупности с другими методами, многофакторность никто не отменял. Но все же дактилоскопические технололгии используются разработчиками ПО и разного рода устройств чаще, чем любые другие биометрические методы.

Вполне может быть, что через некоторое время от этого способа придется отказаться. Дело в том, что в США разработали нейросеть, способную подделывать отпечатки пальцев. Причем компьютер создает изображения таким образом, что они расцениваются разного рода датчиками как фрагменты отпечатков пальцев реальных людей.
Читать полностью »

Программист из Google Клиф Янг объясняет, как взрывное развитие алгоритмов глубинного обучения совпадает с отказом закона Мура, десятилетиями работавшего эмпирического правила прогресса компьютерных чипов, и заставляет разрабатывать принципиально новые вычислительные схемы

В Google рассказывают, как «экспоненциальный» рост ИИ изменяет саму природу вычислений - 1

Взрывное развитие ИИ и алгоритмов машинного обучения изменяет саму природу вычислений – так говорят в одной из самых крупных компаний, практикующих ИИ – в Google. Программист из Google Клиф Янг выступил на открытии осенней конференции по микропроцессорам, организованной компанией Linley Group – популярном симпозиуме по теме компьютерных чипов, проводимом почтенной компанией, занимающейся полупроводниковым анализом.

Янг сказал, что использование ИИ перешло в «экспоненциальную фазу» в тот самый момент, когда закон Мура, десятилетиями работавшее эмпирическое правило прогресса компьютерных чипов, полностью затормозилось.
Читать полностью »

«Такими людей видят компьютеры» – сообщил в Twitter Робби Баррат, продемонстрировав сюрреалистические картины, которые создала написанная им нейросеть.

Честно говоря, эти произведения – зрелище не из приятных. Персонажи картин больше похожи на существ из Сайлент Хилл, чем на людей – у большинства нет голов, а если и есть – то они почему-то выглядят как странные фиолетовые текстуры.

Почему на GitHub нет друзей. О Робби Баррате, Obvious и авторских правах - 1

Да и сам разработчик не скрывает того, что результат получился довольно пугающим. В интервью для CNet Робби называет работы нейросети «сюрреалистическими каплями плоти с конечностями».

И если раньше нейросети-художники обсуждались в более-менее узких кругах, то 25 октября 2018 года эта тема создала резонанс. Все из-за того, что группа французских студентов под названием Obvious продала на аукционе картину, созданную нейросетью, код для которой написал Робби. Так трое студентов с чужим кодом и яркой пиар-кампанией стали ключевыми фигурами в обсуждениях AI-искусства. Заслуженно ли? Давайте разберемся.

Под катом – рассказ о Робби Баррате, авторских правах и удачном маркетинге, который помог выручить почти полмиллиона долларов.Читать полностью »

Системы машинного зрения могут распознавать лица на одном уровне с людьми и даже создавать реалистичные искусственные лица. Но исследователи обнаружили, что эти системы не могут распознать оптические иллюзии, а значит, и создать новые.

Нейросети не понимают, что такое оптические иллюзии - 1

Зрение человека – удивительный аппарат. Хотя оно развивалось в определённой окружающей среде миллионы лет, оно способно на такие задачи, которые никогда не попадались ранним зрительным системам. Хорошим примером будет чтение, или определение искусственных объектов – машин, самолётов, дорожных знаков, и т.п.

Но у зрительной системы есть хорошо известный набор недостатков, воспринимаемых нами, как оптические иллюзии. Исследователи определили уже много вариантов, в которых эти иллюзии заставляют людей неправильно оценивать цвет, размер, взаимное расположение и движение.

Сами по себе иллюзии интересны тем, что дают представление о природе зрительной системы и восприятия. Поэтому будет очень полезно придумать способ находить новые иллюзии, которые помогут изучить ограничения этой системы.
Читать полностью »

Как мы научили нейросеть определять документы - 1

Этим летом мы научили нейронную сеть определять, присутствует ли на изображении документ, и если да — то какой именно.

Для чего это понадобилось

Чтобы разгрузить сотрудников и обезопасить людей от мошенников. Мы применяем новую нейросеть в двух сферах: когда пользователь восстанавливает доступ к странице и для скрытия личных документов из общего поиска.

Читать полностью »

Распознавание изображений с помощью нейросетей становится лучше, но до сих пор исследователи не побороли некоторые его фундаментальные недостатки. Там, где человек четко и ясно видит, например, велосипед, даже передовой натренированный ИИ может увидеть птицу.

Часто причина в так называемых «вредных данных» (или «соревновательных элементах», или «вредоносных экземплярах» или еще куче вариантов, поскольку «adversary examples» так и не получили общепринятого перевода). Это данные, которые обманывают классификатор нейросети, подсовывая ему признаки других классов — информацию не важную и не видную для для человеческого восприятия, но необходимую для машинного зрения.

Исследователи из Google опубликовали в 2015 году исследование, где проиллюстрировали проблему таким примером.

Google объявляет конкурс атак на алгоритмы машинного зрения - 1

На изображение панды наложили «вредный» градиент. Человек на полученной картинке, естественно, продолжает видеть панду, а нейросеть распознает ее как гиббона, поскольку в те участки изображения, по которым нейросеть научилось определять панд, специально намешали признаки другого класса.

В сферах, где машинное зрение должно быть предельно точным, а ошибка, взлом и действия злоумышленников могут иметь тяжелые последствия, вредные данные — серьезная помеха развитию. Прогресс в борьбе идет медленно, и компания GoogleAI (подразделение Google занимающееся исследованием ИИ) решила привлечь силы сообщества и устроить соревнование.
Читать полностью »

Привет! После того, как мы рассмотрели некоторые способы построения многопользовательских виртуальных/3D пространств в прошлой статье, вернемся к ним в контексте обучения. Как, например, качественно обучить одному и тому же целую команду, состоящую из совершенно разных людей. Подробности под катом!

Многопользовательский VR: как реализовать? - 1Читать полностью »

Практическое использование нейросетей - 1

Наверняка многие помнят 4 серию 4-го сезона Кремниевой Долины, вышедшую в прошлом году, в которой Дзанг Янг запилил приложение Not HotDog.

Как оказалось на самом деле, это было реальное приложение, которое сделало HBO специально для этой серии и об этом Хабр уже писал.

Ну а мы расскажем как сделали бота для определения не только хотдогов, но и множества других предметов, а также для определения пола и возраста людей по фотографии.
Читать полностью »

Почему TPU так хорошо подходят для глубинного обучения? - 1
Тензорный процессор третьего поколения

Тензорный процессор Google — интегральная схема специального назначения (ASIC), разработанная с нуля компанией Google для выполнения задач по машинному обучению. Он работает в нескольких основных продуктах Google, включая Translate, Photos, Search Assistant и Gmail. Облачный TPU обеспечивает преимущества, связанные с масштабируемостью и лёгкостью использования, всем разработчикам и специалистам по изучению данных, запускающим передовые модели машинного обучения в облаке Google. На конференции Google Next ‘18 мы объявили о том, что Cloud TPU v2 теперь доступен для всех пользователей, включая бесплатные пробные учётные записи, а Cloud TPU v3 доступен для альфа-тестирования.
Читать полностью »

Исследователи из MIT разработали новый метод шифрования для работы с нейронными сетями в облаке — Gazelle. Сервер обрабатывает данные пользователя, не зная их содержания, то есть они остаются анонимными. Рассказываем о системе и её перспективах.

Как защитить данные в облачных нейросетях — предложен новый метод шифрования - 1Читать полностью »