Рубрика «neurodata lab»

Валентина Евтюхина, автор канала Digital Eva, и специалисты проектной компании и R&D лаборатории Neurodata Lab специально для блога Нетологии подготовили статью о том, как развиваются технологии в сфере распознавания эмоций.

Наука об эмоциях стала популярной не так давно, и в основном благодаря Полу Экману — американскому психологу, автору книги «Психология лжи» и консультанту популярного сериала «Обмани меня», который основан на материалах книги.

Наука эмоций: как умные технологии учатся понимать людей - 1
Пол Экман и Тим Рот — исполнитель главной роли в сериале «Обмани меня», чей персонаж списан с самого Экмана

Сериал стартовал в 2009 году, и в то же время значительно вырос публичный интерес к теме распознавания эмоций. Бум в стартап-среде случился в 2015-2016 годах, когда сразу два технологических гиганта — корпорации Microsoft и Google — доступными для обычных пользователей свои пилотные проекты для работы с наукой эмоций. Читать полностью »

С развитием нейросетей им придумывают всё более разнообразные способы применения. С их помощью обучаются автопилоты Tesla, а распознавание лиц используется не только для обработки фотографий приложениями типа Prisma, но и в системах безопасности. Искусственный интеллект учат диагностировать болезни. В конце концов, с его помощью даже выигрывают выборы.

Но есть одна сфера, которая традиционно считалась принадлежащей исключительно человеку — творчество. Однако и это утверждение начинают ставить под сомнение. Ли Седоль, проигравший AlphaGo, признался: «Поражение заставило меня засомневаться в человеческой креативности. Когда я увидел, как играет AlphaGo, то усомнился в том, насколько хорошо играю сам». Поэтому в сегодняшнем посте давайте поговорим о том, способны ли роботы ступить на территорию искусства, в пространство креативности, а значит эмоций и восприятия.

«Человек» искусства: способен ли искусственный интеллект творить? - 1Читать полностью »

Что делать, если хочется побольше узнать про нейронные сети, методы распознавания образов, компьютерное зрение и глубокое обучение? Один из очевидных вариантов — подыскать для себя какие-либо курсы и начать активно изучать теорию и решать практические задачи. Однако на это придется выделить значительную часть личного времени. Есть другой способ — обратиться к «пассивному» источнику знаний: выбрать для себя литературу и погрузиться в тему, уделяя этому всего полчаса-час в день.

Поэтому, желая облегчить жизнь себе и читателям, мы сделали краткую подборку из книг, статей и текстов по направлению нейросетей и глубокого обучения, рекомендуемых к прочтению резидентами GitHub, Quora, Reddit и других платформ. В неё вошли материалы как для тех, кто только начинает знакомство с нейротехнологиями, так и для коллег, желающих расширить свои знания в этой области или просто подобрать «легкое чтение» на вечер.

36 материалов о нейросетях: книги, статьи и последние исследования - 1Читать полностью »

Первая часть нашего гайда была посвящена интересной задаче машинного обучения – распознаванию пола по голосу. Мы описали общий подход к большинству задач speech processing и с помощью случайного леса, обученного на статистиках акустических признаков, решили задачу с довольно большой точностью – 98,4% верно классифицированных аудиофрагментов.

Во второй части гайда мы посмотрим, справятся ли нейронные сети с этой задачей эффективнее случайного леса, а также попробуем учесть самый большой недостаток классических методов – неумение работать с последовательностями данных.

В каком-то смысле эта ступень избыточна: пол человека не меняется во время разговора (по крайней мере, на текущем этапе развития и в заданных стандартных условиях), поэтому рассчитывать на увеличение точности не стоит. Но в академических целях мы попробуем.

Случайный лес vs нейросети: кто лучше справится с задачей распознавания пола в речи (ч.2) - 1Читать полностью »

С момента описания первого искусственного нейрона Уорреном Мак-Каллоком и Уолтером Питтсом прошло более пятидесяти лет. С тех пор многое изменилось, и сегодня нейросетевые алгоритмы применяются повсеместно. И хотя нейронные сети способны на многое, исследователи при работе с ними сталкиваются с рядом трудностей: от переобучения до проблемы «черного ящика».

Если термины «катастрофическая забывчивость» и «регуляризация весов» вам пока ни о чем не говорят, читайте дальше: попробуем разобраться во всем по порядку.

Что может и чего не может нейросеть: пятиминутный гид для новичков - 1Читать полностью »

Исторически сложилось так, что наибольшего успеха глубокое обучение достигло в задачах image processing – распознавания, сегментации и обработки изображений. Однако не сверточными сетями едиными, как говорится, живет наука о данных.

Мы попробовали составить гайд по решению задач, связанных с обработкой речи. Самой популярной и востребованной из них является, вероятно, распознавание того, что именно говорят, анализ на семантическом уровне, но мы обратимся к более простой задаче – определению пола говорящего. Впрочем, инструментарий в обоих случаях оказывается практически одинаков.

Случайный лес vs нейросети: кто лучше справится с задачей распознавания пола из аудио (ч.1) - 1Читать полностью »

В наши дни технологии по распознаванию перестают быть недосягаемыми. Распознавание эмоций и «эмоциональные вычисления» являются частью большого пласта науки, также включающего такие основополагающие понятия, как распознавание образов и обработка визуальной информации. Этим постом мы хотим открыть наш блог на Хабре и провести небольшой обзор решений, представленных на рынке систем распознавания эмоций — взглянем, какие компании работают в этом сегменте и чем конкретно они занимаются.

Рынок систем детекции и распознавания: Эмоции и «эмоциональные вычисления» - 1Читать полностью »