Рубрика «общая теория относительности»

Наблюдения GRAVITY дополнительно подтвердили общую теорию относительности - 1

Стрелец А* и его звездное скопление. Источник: оригинальная статья.

Европейская южная лаборатория (European Southern Observatory, ESO) при помощи системы VLT (Very Large Telescope, «Очень Большой Телескоп», ОБТ) впервые обнаружила эффекты, предсказанные общей теорией относительности Эйнштейна (ОТО), пронаблюдав за движением звезды, которая прошла через мощное гравитационное поле сверхмассивной чёрной дыры Стрелец А* в центре Млечного Пути.
Читать полностью »

Математики опровергли гипотезу существования сильного принципа космической цензуры. Их работа отвечает на один из наиболее важных вопросов в изучении общей теории относительности и меняет то, как мы рассуждаем о пространстве-времени.

Математики опровергли гипотезу, призванную спасти чёрные дыры - 1

Спустя почти 40 лет после его постановки, математики определились с одним из самых выдающихся вопросов в изучении общей теории относительности. В работе, опубликованной в интернете прошлой осенью, математики Михалис Дафермос и Джонатан Лак доказали, что сильная форма принципа космической цензуры, относящегося к странной структуре чёрных дыр, неверна.

«Лично я считаю эту работу невероятным достижением – качественным скачком в нашем понимании ОТО», — написал мне Игорь Роднянский, математик из Принстонского университета.
Читать полностью »

Две команды исследователей значительно продвинулись к доказательству гипотезы стабильности чёрных дыр, важнейшей математической проверке Общей теории относительности Эйнштейна.

Для проверки уравнений Эйнштейна необходимо проткнуть чёрную дыру - 1

В ноябре 1915 года на лекции в Прусской академии наук, Альберт Эйнштейн описал идею, перевернувшую представление человечества о Вселенной. Вместо того, чтобы принимать геометрию пространства и времени фиксированной, Эйнштейн объяснил, что мы живём в четырёхмерной реальности под названием пространство-время, чья форма колеблется, реагируя на материю и энергию.

Эйнштейн подробно расписал эту важную идею в нескольких уравнениях, называемых "уравнениями Эйнштейна" (или уравнениями гравитационного поля), формирующих ядро его ОТО. Эту теорию подтвердили все экспериментальные проверки, которым она подвергалась в следующее столетие.
Читать полностью »

К 1913 году Альберт Эйнштейн почти закончил общую теорию относительности. Но одна простая ошибка привела к тому, что он два года мучительно пересматривал свою теорию. И сегодня математики всё ещё сражаются с теми трудностями, что встали у него на пути.

Как Эйнштейн однажды потерялся, чуть не потеряв и общую теорию относительности - 1

Альберт Эйнштейн выпустил свою общую теорию относительности в конце 1915 года. А должен был бы закончить её на два года раньше. Когда исследователи изучали его записи того периода, они увидели практически законченные уравнения, в которых не хватало лишь парочки деталей. «Это должна была быть окончательная теория», — сказал Джон Нортон, эксперт по Эйнштейну и историк науки из Питтсбургского университета.

Но Эйнштейн в последний момент допустил критическую ошибку, отправившую его на путь сомнений и открытий – такой сложный, что тот едва не стоил ему его величайшего научного достижения. Последствия его решения продолжают отзываться в математике и физике сегодняшнего дня.
Читать полностью »

Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Впервые зарегистрированы гравитационные волны от слияния нейтронных звезд — и свет от них - 1
Иллюстрация столкновения нейтронных звезд. Узкий выбор по диагонали — поток гамма-лучей. Светящееся облако вокруг звезд — источник видимого света, который наблюдали телескопы после слияния. Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet

Нейтронные звезды, самые маленькие и плотные из всех звезд, образуются при взрыве сверхновой. Когда две нейтронные звезды образуются в паре, они вращаются друг вокруг друга, и постепенно теряют энергию, сближаясь и излучая гравитационные волны, пока наконец не сталкиваются. Такое столкновение и наблюдали телескопы LIGO, а через две секунды после — гамма-вслеск достиг космического телескопа Ферми, и в последующие дни и недели астрономы могли наблюдать событие в других электромагнитных диапазонах.

Впервые гравитационные волны были зарегистрированы два года назад — от слияния черных дыр. С тех пор еще три сигнала от черных дыр были приняты детекторами, последний — всего за три дня до этого события.

Под катом — о сигнале и открытиях, с ним связанных: точной оценке на скорость гравитационных волн, независимой оценке на постоянную Хаббла и новых данных по физике нейтронных звезд.
Читать полностью »

Сегодня коллаборация LIGO & Virgo объявили (будет опубликована в PRL, статью можно почитать тут) о новом детектировании гравитационных волн (GW170814). Первые три события (раз, два, три) были зарегистрированы на двух детекторах LIGO в США. 1 августа к наблюдениям присоединился европейский детектор Advanced VIRGO, расположенный в Италии. А уже 14 августа гравитационные волны от слияния двух черных дыр были зарегистрированы всеми тремя детекторами.

Гравитационные волны пойманы в четвертый раз: как помог новый детектор Advanced Virgo - 1
Оценка расположения всех зарегистированных источников гравитационных волн. GW170814 определен с гораздо большей точностью за счет использования данных с трех детекторов.
Читать полностью »

Сегодня международная коллаборация LIGO-Virgo объявила о регистрации гравитационных волн в третий раз в истории. Источником, как и в предыдущие два раза, являлась пара черных дыр. О результатах исследования опубликована статья в Physical Review Letters.

В третий раз зарегистрированы гравитационные волны: что мы можем узнать о Вселенной? - 1
Читать полностью »

Что такое пространство-время на самом деле? - 1

Перевод поста Стивена Вольфрама "What Is Spacetime, Really?".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.

Примечание: данный пост Стивена Вольфрама неразрывно связан с теорией клеточных автоматов и других смежных понятий, а также с его книгой A New Kind of Science (Новый вид науки), на которую из этой статьи идёт большое количество ссылок. Пост хорошо иллюстрирует применение программирования в научной сфере, в частности, Стивен показывает (код приводится в книге) множество примеров программирования на языке Wolfram Language в области физики, математики, теории вычислимости, дискретных систем и др.


Содержание

Простая теория всего?
Структура данных Вселенной
Пространство как граф
Может быть, нет ничего, кроме пространства
Что есть время?
Формирование сети
Вывод СТО
Вывод ОТО (Общей теории относительности)
Частицы, квантовая механика и прочее
В поисках вселенной
Ок, покажите мне Вселенную
Заниматься физикой или нет — вот в чем вопрос
Что требуется?
Но пришло ли время?


Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности — блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума).

Есть много различных моментов в теории, указывающих, что общая теория относительности — не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить, что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов — физической теории всего.

Во-первых, такой подход казался не слишком перспективным — хотя бы потому, что модели, которые я изучал (клеточные автоматы), казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году — в то время, когда вышла первая версия Mathematica, я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.
Читать полностью »

Вселенная, конечно, расширяется, и это расширение ускоряется. Но что мы знаем об этом процессе кроме простого названия «тёмная энергия»?

Выбирая между отчаянием и энергией, я выберу последнее
— Джон Китс

Всю неделю вы напрягали мозг в попытках задать глубокий и загадочный вопрос о Вселенной, и мы получили множество великолепных вопросов – жаль, что я могу выбрать лишь один из них. На этой неделе честь достаётся Пиуш Гупте, которая спрашивает:

Мы узнали, что тёмная энергия составляет примерно 70% от энергии Вселенной. У нас есть доказательства её существования благодаря разным наблюдениям. И она действительно влияет на эволюцию Вселенной. Но что есть тёмная энергия? Имеем ли мы хоть какое представление? Есть для неё какие-либо приемлемые модели?

И у нас правда есть пара хороших идей, но давайте для начала сверим наши знания.

Спросите Итана №59: что такое тёмная энергия? - 1

Первое, что нужно принять – концепцию пространства-времени, а также самую важную идею общей теории относительности: количество и тип материи и энергии во Вселенной неразрывно связаны с эволюцией пространства-времени по мере движения Вселенной во времени. До Эйнштейна считалось, что пространство и время постоянны и фиксированы. С одной стороны, есть пространство, которое можно представить как статичную трёхмерную сетку, а с другой — время, отдельный фиксированный континуум, через который все точки пространства двигаются одновременно.

В ОТО всё это меняется сразу двумя способами – и оба очень важны.
Читать полностью »

Сегодня научная коллаборация LIGO-Virgo объявила об обнаружении гравитационных волн от второго источника и обнародовала результаты первого научного цикла наблюдений (всего три события за четыре месяца наблюдений). Статья опубликована в Physical Review Letters.

На заре гравитационно-волновой астрономии: второе наблюдение слияния черных дыр - 1

Читать полностью »