Рубрика «OpenGL»

OGL3

Bloom

В связи с ограниченным диапазоном яркости, доступным обычным мониторам, задача убедительного отображения ярких источников света и ярко освещенных поверхностей является сложной по определению. Одним из распространенных методов, позволяющих подчеркнуть яркие области на мониторе, является техника, добавляющая ореол свечения вокруг ярких объектов, создающая впечатление «растекания» света за пределы источника света. В итоге у наблюдателя создается впечатление о высокой яркости таких освещенных участков или источников света.

Описанный эффект ореола и выхода света за пределы источника достигается техникой пост-обработки, именуемой блумом (bloom). Применение эффекта добавляет всем ярким участкам отображаемой сцены характерный ореол свечения, что можно увидеть на примере ниже:

Learn OpenGL. Урок 5.8 – Bloom - 2

Читать полностью »

HDR

При записи во фреймбуфер значения яркости цветов приводятся к интервалу от 0.0 до 1.0. Из-за этой, на первый вгляд безобидной, особенности нам всегда приходится выбирать такие значения для освещения и цветов, чтобы они вписывались в это ограничение. Такой подход работает и даёт достойные результаты, но что случится, если мы встретим особенно яркую область с большим количеством ярких источников света, и суммарная яркость превысит 1.0? В результате все значения, большие чем 1.0, будут приведены к 1.0, что выглядит не очень красиво:

Learn OpenGL. Урок 5.7 — HDR - 1

Так как для большого количества фрагментов цветовые значения приведены к 1.0, получаются большие области изображения, залитые одним и тем же белым цветом, теряется значительное количество деталей изображения, и само изображение начинает выглядеть неестественно.

Решением данной проблемы может быть снижение яркости источников света, чтобы на сцене не было фрагментов ярче 1.0: это не лучшее решение, вынуждающее использовать нереалистичные значения освещения. Лучший подход заключается в том, чтобы разрешить значениям яркости временно превышать яркость 1.0 и на финальном шаге изменить цвета так, чтобы яркость вернулась к диапазону от 0.0 до 1.0, но без потери деталей изображения.

Дисплей компьютера способен показывать цвета с яркостью в диапазоне от 0.0 до 1.0, но у нас нет такого ограничения при расчёте освещения. Разрешая цветам фрагмента быть ярче единицы, мы получаем намного более высокий диапазон яркости для работы — HDR (high dynamic range). С использованием hdr яркие вещи выглядят яркими, тёмные вещи могут быть реально тёмными, и при этом мы будем видеть детали.

Читать полностью »

OGL3

Parallax Mapping

Техника текстурирования Parallax Mapping по своему эффекту несколько схожа с Normal Mapping’ом, но основана на другом принципе. Схожесть в том, что, как и Normal Mapping, данная техника значительно увеличивает визуальную сложность и детализацию поверхности с нанесенной текстурой заодно создавая правдоподобную иллюзия наличия на поверхности перепадов высот. Parallax Mapping отлично работает в связке с Normal Mapping для создания весьма достоверных результатов: описываемая техника передает эффект рельефа гораздо лучше Normal Mapping, а Normal Mapping дополняет его для правдоподобной имитации динамического освещения. Parallax Mapping вряд ли можно считать техникой, прямо относящейся к методам имитации освещения, но все же я выбрал этот раздел для его рассмотрения, поскольку метод является логическим развитием идей Normal Mapping. Также отмечу, что для разбора этой статьи требуется хорошее понимание алгоритма работы Normal Mapping, в особенности понятия касательного пространства или tangent space.
Читать полностью »

OGL3

Normal Mapping

Все сцены, которые мы используем состоят из многоугольников, в свою очередь состоящих из сотен, тысяч абсолютно плоских треугольников. Нам уже удалось немного повысить реализм сцен за счет дополнительных деталей, которые обеспечивает нанесение двухмерных текстур на эти плоские треугольники. Текстурирование помогает скрыть факт того, что все объекты в сцене – всего лишь набор множества мелких треугольников. Великолепная техника, но возможности её не безграничны: при приближении к любой поверхности все одно становится ясно, что она состоит из плоских поверхностей. Большая же часть реальных объектов не является абсолютно плоской и демонстрирует множество рельефных деталей.
Читать полностью »

Apple объявила устаревшими технологии OpenGL и OpenCL - 1
Из презентации Apple

Компания Apple обновила документацию для разработчиков. Раздел «Что нового?» посвящён ключевым изменениям в macOS 10.14: это тёмная цветовая схема Dark Mode, новая технология Create ML для создания и обучения нейросетей на Mac, обновлённый Mac App Store с новыми программными интерфейсами для рейтингов и обзоров (под macOS 10.14 SDK), новый сетевой фреймворк Network Framework, предоставляющий прямой доступ к сетевым протоколам TLS, TCP и UDP из приложений, фреймворк Natural Language для анализа естественной речи и вычленения из неё метаданных, специфических для конкретного языка (фреймворк можно использовать совместно с Create ML при обучении нейросетей).

Но самое интересное спрятано в подвале, а именно в разделе «Устаревшие и удалённые API» (Deprecations and Removed APIs). Там упоминается об отказе от «устаревших» технологий OpenGL и OpenCL. Этим технологиям вручается «чёрная метка», то есть Apple настоятельно не рекомендует использовать OpenGL и OpenCL в разработке новых продуктов.
Читать полностью »

OGL3

Всенаправленные карты теней

В предыдущем уроке мы разобрались с созданием динамических проекционных теней. Эта техника отлично работает, но, увы, подходит она только для направленных источников света, поскольку карта теней создается в одном направлении, совпадающим с направлением источника. Именно поэтому данная техника также называется направленной картой теней, так как карта глубин (карта теней) создается именно вдоль направления действия источника света.
Данный же урок будет посвящён созданию динамических теней, проецирующихся во всех направлениях. Этот подход отлично подходит для работы с точечными источниками освещения, ведь они должны отбрасывать тени во всех направлениях сразу. Соответственно, данная техника называется всенаправленной картой теней.

Урок во многом опирается на материалы предыдущего урока, так что если вы еще не практиковались с обычными картами теней, стоит сделать это перед продолжением изучения этой статьи.

Читать полностью »

Learn OpenGL. Урок 5.3 — Карты теней - 1

Тень — это отсутствие света. Если лучи от источника света не попадают на объект, так как поглощаются другим объектом, то первый объект находится в тени. Тени добавляют реализма к изображению и дают увидеть взаимное расположение объектов. Благодаря ним сцена приобретает "глубину". Сравните следующие изображения сцены с тенями и без:

with_shadows_and_without

Как можно заметить, тени делают намного более очевидным то, как объекты расположены друг относительно друга. Благодаря теням видно, что один из кубов висит в воздухе.

Тени сложновато реализовать, особенно потому что реалтайм алгоритм для идеальных теней ещё не придуман. Существуют несколько хороших способов для приблизительного рассчёта теней, но они все имеют свои особенности, которые надо принимать во внимание.

Один из методов — карты теней (shadow maps) — относительно простой в реализации, используется в большинстве видеоигр и даёт достойные результаты. Карты теней не так уж и трудно понять, они довольно дёшевы с точки зрения производительности и их легко улучшить до более продвинутых алгоритмов (типа теней от точечного источника света или каскадных карт теней)

Читать полностью »

OGL3

Гамма-коррекция

Итак, мы вычислили цвета всех пикселей сцены, самое время отобразить их на мониторе. На заре цифровой обработки изображений большинство мониторов имели электронно-лучевые трубки (ЭЛТ). Этот тип мониторов имел физическую особенность: повышение входного напряжение в два раза не означало двукратного увеличения яркости. Зависимость между входным напряжением и яркостью выражалась степенной функцией, с показателем примерно 2.2, также известным как гамма монитора.

Читать полностью »

OGL3

Продвинутое освещение

В уроке посвященном основам освещения мы кратко разобрали модель освещения Фонга, позволяющую придать существенную долю реализма нашим сценам. Модель Фонга выглядит вполне неплохо, но имеет несколько недостатков, на которых мы сосредоточимся в данном уроке.

Читать полностью »

OGL3

Сглаживание

В своих изысканиях, посвященных трехмерному рендеру вы наверняка сталкивались с появлением пикселизованных зазубрин по краям отрисовываемых моделей. Эти отметины неизбежно появляются из-за принципа преобразования вершинных данных в экранные фрагменты растеризатором где-то в глубине пайплайна OpenGL. К примеру, даже на такой простой фигуре как куб уже заметны эти артефакты:

Learn OpenGL. Урок 4.11 — Сглаживание - 2

Беглый взгляд, возможно, и не заметит ничего, но стоит посмотреть внимательней и на гранях куба проявятся означенные зазубрины. Попробуем увеличить изображение:

Learn OpenGL. Урок 4.11 — Сглаживание - 3

Нет, это никуда не годится. Разве такое качество изображения хочется видеть в релизной версии своего приложения?
Читать полностью »