Рубрика «оптика»

Балет в воздухе: управляемая левитация частиц за счет звуковых волн - 1

«В космосе никто не услышит твоего крика» — эта знаменитая фраза из не менее знаменитого фильма «Чужой» (1979 год) буквально с порога говорит нам о двух вещах. Во-первых, что это фильм ужасов, а во-вторых, что в вакууме не распространяется то, к чему многие из нас привыкают буквально с рождения, а именно звук. Звуковые волны окружают нас всегда и везде, хоть мы их и не видим. А что если бы могли? Точнее сказать, а что если бы звук можно было использовать как «телекинетическую» силу? Настроил прибор, выбрал частоту и вуаля — объект перемещается так, как вам угодно. Сегодня мы с вами рассмотрим исследование новой технологии под названием голографический акустический пинцет, с помощью которой ученые заставили частицы левитировать по указанному ими паттерну. Как ученым удалось из микрочастиц сделать Копперфильдов, насколько технология работоспособна и какое применение ей видят сами ученые? На эти и другие вопросы будем искать ответы в докладе исследовательской группы. Поехали.Читать полностью »

DWDM: решение дешевле операторского на 30-50% (класс Enterprise) - 1

На рынке оптики кое-что поменялось за последние два года. Теперь можно купить собственные DWDM-юниты, поставить их в стойку в дата-центре. И получить всё это дешевле, чем традиционные операторские решения.

Кому нужно точно:
— Если у вас стоит транспортная сеть DWDM/CWDM, реализованная до 2012 года.
— Если вам нужно увеличить пропускную способность вашей транспортной сети и/или подключить новые филиалы, и вы как раз просчитываете бюджет.
— Если при этом у вас — метросеть (не трансконтинентальная, а внутри города и его пригорода).
— Если у вас перегружены оптические каналы или скоро они таковыми будут.

Несколько лет назад ряд крупных вендоров DWDM объявил, что оборудование будет эволюционировать в более Enterprise-friendly-сторону (более компактное, выгодное по цене, с большей пропускной способностью). Сейчас это случилось, но формы такого «friendly» разные.

В этом посте я объясню, почему пора переходить на Enterprise-оборудование, и сделаю обзор устройств от нескольких топовых вендоров: Huawei, ADVA, Ciena.
Читать полностью »

Исследователи компьютерного зрения обнаружили имеющийся у нас в распоряжении скрытый мир визуальных сигналов, где есть незаметные движения, выдающие то, что было сказано, и расплывчатые изображения того, что находится за углом

Новая наука заглядывания за угол - 1

Специалист по компьютерному зрению Антонио Торральба, отдыхая на побережье Испании в 2012 году, заметил на стене своей комнаты в отеле случайные тени, которые, казалось, ничто не отбрасывало. В итоге Торральба понял, что изменившие цвет пятна на стене были не тенями, а тусклыми, перевёрнутыми изображениями патио, находившегося снаружи. Окно работало как пинхол – простейший вид камеры, в которой лучи света проходят через небольшое отверстие и формируют с другой стороны перевёрнутое изображение. На залитой солнцем стене это изображение едва можно было различить. Но Торральба осознал, что наш мир заполнен визуальной информацией, которую не воспринимают наши глаза.

«Эти изображения скрыты от нас, — сказал он, — но они постоянно нас окружают».
Читать полностью »

Мы уже проложили оптику до дома, но проложить её до процессора пока проблематично

Кремниевая фотоника спотыкается на последнем метре - 1

Если вам кажется, что сегодня мы находимся на пороге технологической революции, представьте, каково было в середине 1980-х. Кремниевые чипы использовали транзисторы с характерным размером, измеряемым микронами. Оптоволоконные системы с огромной скоростью перемещали триллионы битов по всему миру. Казалось, всё возможно – стоит только скомбинировать цифровую кремниевую логику, оптоэлектронику и передачу данных по оптоволокну.

Инженеры представляли себе, как все эти прорывные технологии продолжат развиваться и сойдутся в точке, в которой фотоника сливается с электроникой и постепенно заменяет её. Фотоника позволяла бы перемещать биты не только между странами, но и внутри дата-центров, и даже внутри компьютеров. Оптоволокно перемещало бы данные от чипа к чипу – так они думали. И даже сами чипы были бы фотонными – многие считали, что невероятно быстрые логические чипы когда-нибудь станут работать с использованием фотонов вместо электронов.
Читать полностью »

Назад в будущее: практическое подтверждение теории Томонаги — Латтинжера спустя почти 56 лет - 1

Многие технологии сильно изменились с момента своего изобретения. Их совершенствование подпитывалось различными исследованиями и открытиями, каждое из которых находило новые способы реализации, будь то материалы, модели системы или новые алгоритмы. Визуально одним из самых ярких примеров являются вычислительные устройства. Когда-то они занимали целые комнаты и весили по несколько тонн, а сейчас у каждого из нас есть мобильный телефон, чья мощность в разы превышает те габаритные компьютеры. Но процесс минимизации устройств и их составляющих далек от завершения, ибо пока есть куда уменьшать, ученые будут изобретать новые способы чтобы этого достичь. Сегодня мы поговорим об исследовании, которое как раз может сильно повлиять на процесс минимизации, а точнее об опытном подтверждении теории одномерных электронов, которой уже без малого 56 лет. Поехали.Читать полностью »

Фотонный генератор случайных чисел: самое надежное шифрование? - 1

Информация это один из самых ценных ресурсов нашего времени. Полезна ли информация? Вопрос риторический. Конечно, да. Но попав не в те руки, она может навредить. Именно потому и используются различные методы, техники и алгоритмы шифрования данных. Ведь, покупая что-то в сети, вы не хотите чтобы ваши платежные данные попали какому-то проходимцу. Однако не все алгоритмы одинаково хороши. Защита данных и хакеры (будем для простоты называть всех похитителей данных именно так) всегда работают на опережение друг друга. С появлением нового способа шифрования появляются и новые методы его обойти. Но что если будет такой алгоритм, который невозможно взломать? В этом помогают квантовые генераторы случайных чисел. Исследователи из университета Бристоля (Великобритания) разработали новое устройство шифрования — чип размером 1 мм2, использующее для генерации чисел фотоны. Еще одной отличительной чертой новинки является ее скорость — более 1 Гбит/с. Какие сложности пришлось преодолеть, какие преимущества именно у этого устройства в сравнении с другими, и насколько защищенными с его помощью станут наши данные? На эти и другие вопросы будем искать ответы в отчете исследователей. Поехали.Читать полностью »

Квантовый компьютер: один фотон, чтобы править всеми - 1

История вычислительной техники, которую мы сейчас называем просто сервер или компьютер, началась много веков назад. С течением времени и развитием технологий совершенствовались и компьютеры. Улучшалась производительность, скорость работы и даже внешний вид. Любой компьютер в своей основе реализует определенные законы естественных наук, таких как физика и химия. Углубляясь в любую из этих наук, исследователи находят новые и новые пути совершенствования вычислительных систем. Сегодня мы будем знакомиться с исследованием, нацеленным на реализацию применения фотонов в квантовых компьютерах. Поехали.Читать полностью »

Решение проблемы УФ-излучения в технологии голографического хранения данных - 1

С незапамятных времен человек, обладающий некой информацией, старался ее сохранить. Причиной этого могло быть желание повторно эту информацию использовать или же желание передать ее следующим поколениям. В любом случае для сохранения информации необходим «контейнер», где она будет храниться. Первыми такими носителями информации были скалы, на которых древние люди изображали различные события из своей жизни (охота, быт, наблюдения окружающего мира и т.д.). Сейчас мы далеко вперед шагнули от рисунков на скалах. Оптические диски, HDD, SDD, флеш-память и другие носители стали для нас абсолютно обыденными вещами. Однако, что вы скажете про использование голографических технологий для хранения информации? Этот нестандартный способ не нов, однако лишь недавно ученым удалось решить фундаментальную проблему, которая мешала этой технологии перекочевать из теории в практику. Что это за проблема, как ее решили и стоит ли нам ждать революцию в сфере хранения данных? На эти и другие вопросы мы и попытаемся сегодня ответить. Поехали.
Читать полностью »

22.03.2018 Defence One и Ars Technica сообщили о том, что в лаборатории нелетального вооружения Пентагона (JNLWD) близки к созданию нового типа лазерно-плазменного оружия, одним из основных поражающих факторов которого станет звук.

В США создают лазерную установку, которая будет пугать противника звуком - 1

Специалисты из Пентагона убеждены, что новое “вундер ваффе" созданное на стыке оптики и акустики сможет заменить сразу несколько типов нелетального вооружения армии США. В основе разработки — применение эффектов плазмы, индуцированной лазерами. Под катом подробно о плазменной установке из Квантико.
Читать полностью »

Среди численных методов, используемых в процессе проектирования современных оптических компонентов, обычно выделяют две большие группы: универсальные полноволновые и приближенные. Выбор конкретного подхода зависит от соотношения моделируемого объекта с длиной волны и характера распространения электромагнитных волн.

Полноволновые методы, основанные на непосредственном решении волновых уравнений для компонент электромагнитного поля при заданных граничных условиях, обычно применяются для разработки оптических микро- и наноустройств. В то время как для проектирования макроскопических систем типа фокусирующих линз, интерферометров и монохроматоров используются приближенные методы. К ним, в частности, можно отнести геометрическую трассировку лучей.

В данной заметке помимо краткого разбора двух традиционных методов, мы расскажем о более новом подходе, который получил название "метод огибающей пучка" (beam envelope method), и обсудим его преимущества для задач вычислительной оптики.
image

Читать полностью »