Рубрика «random forest»

1. Вступление

В очень сильно нагруженных порталах или API может возникать потребность в применении алгоритмов машинного обучения, например, с целью классификации пользователей. В рамках данной заметки будет показан процесс реализации некоторых высокопроизводительных линейных моделей, а также даны объяснения основных теоретических принципов.

Читать полностью »

Практика анализа данных в прикладной психологии - 1

1. Вступление

Показан процесс анализа информации в сфере прикладной психологии. Если быть более точным, то я поделюсь своим опытом поиска различий между двумя группами людей. Будет показан один из самых популярных сценариев решения подобной задачи, а также приведены примеры исходного кода на языках программирования R и Python. Важно понимать, что вся изложенная информация является моим личным субъективным мнением.

Читать полностью »

Привет всем, кто дожил до пятой темы нашего курса!

Курс собрал уже более 1000 участников, из них первые 3 домашних задания сделали 520, 450 и 360 человек соответственно. Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес - 1 Около 200 участников пока идут с максимальным баллом. Отток намного ниже, чем в MOOC-ах, даже несмотря на большой объем наших статей.

Данное занятие мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию, и таким образом улучшим точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.

Список статей серии

  1. Первичный анализ данных с Pandas
  2. Визуальный анализ данных c Python
  3. Классификация, деревья решений и метод ближайших соседей
  4. Линейные модели классификации и регрессии
  5. Композиции: бэггинг, случайный лес
  6. Обучение без учителя: PCA, кластеризация, поиск аномалий
  7. Искусство построения и отбора признаков. Приложения в задачах обработки текста, изображений и гео-данных

Читать полностью »

Random Forest

1. Вступление

Это небольшое практическое руководство по применению алгоритмов машинного обучения. Разумеется, существует немалое число алгоритмов машинного обучения и способов математического (статистического) анализа информации, однако, эта заметка посвящена именно Random Forest. В заметке показаны примеры использования этого алгоритма для задач классификации и регрессии, а также даны некоторые теоретические пояснения.

Читать полностью »

Применение машинного обучения может включать работу с данными, тонкую настройку уже обученного алгоритма и т. д. Но масштабная математическая подготовка нужна и на более раннем этапе: когда вы только выбираете модель для дальнейшего использования. Можно выбирать «вручную», применяя разные модели, а можно и этот процесс попробовать автоматизировать.

Под катом — лекция ведущего научного сотрудника РАН, доктора наук и главного редактора журнала «Машинное обучение и анализ данных» Вадима Стрижова, а также большинство слайдов.

Читать полностью »

В предыдущей статье на примере покупки Mercedes-Benz E-klasse не старше 2010 года выпуска стоимостью до 1.5 млн рублей в Москве была рассмотрена задача поиска выгодных автомобилей. Под выгодными следует понимать предложения, цена которых ниже рыночной в текущий момент среди объявлений, собранных со всех наиболее авторитетных сайтов по продаже б/у автомобилей в РФ.

На первом этапе в качестве метода машинного обучения была выбрана множественная линейная регрессия, были рассмотрены правомерность ее использования, а также плюсы и минусы. Простая линейная регрессия была выбрана в качестве ознакомительного алгоритма. Очевидно, что существует еще много методов машинного обучения для решения поставленной задачи регрессии. В этой статье я хотел бы рассказать вам, как именно я выбирал наиболее оптимальный алгоритм машинного обучения для исследуемой модели, который в настоящее время используется в реализованном мною сервисе — robasta.ru.

Как программист машину покупал. Часть II - 1

Читать полностью »

1. Вступление

Это небольшой рассказ о практических вопросах использования машинного обучения для масштабных статистических исследований различных данных в Интернет. Также будет затронута тема применения базовых методов математической статистики для анализа данных.

Читать полностью »

image

Вряд ли можно представить мир современных сетевых технологий без DPI (deep packet inspection – глубокий анализ пакетов). На нём держатся системы обнаружения сетевых атак, львиная доля политик безопасности корпоративных сетей, шейпинг и блокировка пользовательского трафика оператором связи – да-да, чтобы выполнять требования Роскомнадзора, средства DPI обязан иметь каждый провайдер.

И всё-таки, при всей своей востребованности, DPI – затратный зверь. На магистральных линиях связи стоимость аппаратного решения (о софте тут речь идти не может) исчисляется миллионами зелёных американских человечков. А программные решения вроде OpenDPI подходят только для небольших корпоративных и кампусных сетей. Дело всё в том, что быстро определить протокол прикладного уровня по шаблону, коих могут быть тысячи — задача очень ресурсоёмкая.

В данной статье я хочу предложить способ эффективного решения одной из главных задач DPI – определения протокола прикладного уровня – при этом не сверяясь со списком широко известных портов (well-known ports) и не глядя в полезную нагрузку пакетов. Вообще.
Читать полностью »

Всем привет!

Меня зовут Алексей. Я Data Scientist в компании Align Technology. В этом материале я расскажу вам о подходах к feature selection, которые мы практикуем в ходе экспериментов по анализу данных.

В нашей компании статистики и инженеры machine learning анализируют большие объемы клинической информации, связанные с лечением пациентов. В двух словах смысл этой статьи можно свести к извлечению ценных крупиц знания, содержащихся в небольшой доле доступных нам зашумленных и избыточных гигабайтов данных.

Данная статья предназначена для статистиков, инженеров машинного обучения и специалистов, которые интересуются вопросами обнаружения зависимостей в наборах данных. Также материал, изложенный в статье, может быть интересен широкому кругу читателей, неравнодушных к data mining. В материале не будут затронуты вопросы feature engineering и, в частности, применения таких методов как анализ главных компонент.

Читать полностью »

Эта статья подготовлена по мотивам (первой части) учебного задания Bag of Words Kaggle, но это не перевод. Оригинальное задание сделано на Python. Я же хотел оценить возможности языка R для обработки текстов на естественном языке и заодно попробовать реализацию Random Forest в обертке R-пакета caret.

Смысл задания – построить «машину», которая будет определенным образом обрабатывать обзоры фильмов на английском языке и определять тональность обзора, относя его к одному из двух классов: негативные/позитивные. В качестве обучающей выборки в задании используется набор данных с двадцатью пятью тысячами ревю из IMDB, размеченных неизвестными добровольцами.
Читать полностью »