Рубрика «трансгуманизм»

История с эпигенетическими биомаркерами началась в 2013 году. Тогда первопроходец в этом направлении, специалист в области генетики и биостатистики, сотрудник Калифорнийского университета в Лос-Анджелесе Стив Хорват представил свой новый революционный метод определения биологического возраста, названный «эпигенетическими часами». Как можно понять из названия, в основе этого метода лежали изменения эпигенома, а именно метилирование ДНК.

Метилирование ДНК представляет из себя один из эпигенетических механизмов регуляции экспрессии генов. В ходе метилирования метильная группа СН3- специальными ферментами присоединяется к одному из оснований ДНК, цитозину. В результате чего образуется 5-метилцитозин и происходит инактивация экспрессии генов — процесс транскрипции блокируется. Как сегодня известно, метилирование ДНК – это процесс динамический. Оно может изменяться под воздействием внешних факторов, связано с развитием ряда патологий и может наследоваться следующими поколениями. Метилирование играет одну из ключевых ролей в деактивации чужеродной ДНК, а также в процессах развития и старения. Описаны возрастные изменения метилирования, получившие название «эпигенетического дрейфа». Так, с возрастом наблюдается гипометилирование (деметилирование) и связанная с этим хромосомная нестабильность. Кроме этого, при старении происходит и обратный процесс – гиперметилирование некоторых промоторных областей, в том числе определенных генов-супрессоров опухолей, что связано с развитием патологий [1]. В целом, сегодня считается, что изменение метилирования играют одну из ключевых ролей в старении.

Читать полностью »

Сенесцентными (старыми) сегодня принято называть клетки, у которых под воздействием различных факторов (стрессовых или исчерпания ресурса деления) остановлен клеточный цикл. В результате чего такие клетки не делятся и не обновляются.

На прошедшей в Кембриджском университете конференции «Cell Senescence in Cancer and Ageing» было дано такое определение клеточного старения: «Клеточным старением называется устойчивая остановка пролиферации, вызванная различными молекулярными триггерами, включающими активацию онкогенов, а также избыточное количество клеточных делений. Кроме того, сенесцентные клетки характеризуются секрецией целого ряда стромальных регуляторов и регуляторов воспаления (так называемым «ассоциированным со старением сереторным фенотипом»), влияющих на функционирование соседних клеток, включая иммунокомпетентные. Целый ряд убедительных фактов свидетельствует о том, что клеточное старение представляет собой эффективный механизм подавления опухолевого роста. В тоже время, клеточное старение возможно вносит свой вклад в старение тканей и всего организма».

Из-за разных причинных механизмов, выделяется три вида клеточного старения.

Читать полностью »

Увеличение времени между приёмами пищи и ограничение калорий продлевает жизнь.

В сентябре 2018 года в журнале Cell Metabolism вышло исследование американских геронтологов из Национального института по проблемам старения (NIH) о влиянии времени между приёмами пищи на продолжительность жизни. Подопытные мыши были разделены на две группы. У первой группы был рацион с естественным питанием (уменьшенным количеством очищенных углеводов и жиров, и повышенным содержанием белков и клетчатки). Другая группа грызунов, напротив, была посажена на «нездоровую» диету – с увеличенным количеством простых углеводов и жиров, и уменьшенным – белков и клетчатки. Кроме этого, мышей в каждой группе разделили на три подгруппы, исходя из того, как часто они имеют доступ к пище. Первая подгруппа мышей имела доступ к еде круглосуточно. Второй подгруппе мышей давалось питание один раз в день, и количество калорий в их порции было таким же, как и у мышей из первой подгруппы, т.е. не урезанным. Третью подгруппу кормили рационом, уменьшенным на 30% калорий.
Вторая и третья подгруппы, по наблюдениям учёных, имели более сильный аппетит и быстро съедали принесённую еду, что приводило к более продолжительным ежедневным периодам голодания для обеих групп.

Новости о борьбе со старением - 1
Рисунок из статьи.
Первая подгруппа мышей (ad libitum) — питавшиеся досыта, имевшие доступ к пище 24 часа в сутки
Вторая подгруппа мышей (meal-fed) — получавшая пищу один раз в день, без урезания калорий.
Третья подгруппа мышей (CR, calorie restriction) — получавшая рацион, уменьшенный по калориям на 30%.

Читать полностью »

Механизмы анти-старения и увеличения срока жизни, связанные с ограничением калорий: данные исследований генетически модифицированных животных.

Хорошо известно, что ограничение калорийности (сalorie restriction, CR) увеличивает продолжительность жизни и подавляет различные патофизиологические изменения. CR подавляет передачу сигналов гормона роста / инсулиноподобного фактора роста и mTORC1, активирует сиртуин и усиливает митохондриальную окислительно-восстановительную регуляцию. Но точные механизмы находятся в стадии обсуждения. В этом обзоре мы обсудим механизмы CR, используя данные исследований животных, которые были генетически модифицированы в соответствии с недавними достижениями в молекулярных и генетических технологиях, с точки зрения гипотезы адаптивного ответа, предложенной Холлидей в1989 году. Также мы объясним положительные действия CR, классифицированные в зависимости от того, действуют ли они в условиях питания или голодания.

Введение

Читать полностью »

Митохондрии – маленькие труженики или большие начальники?

Если вы думаете, что самая важная для нас история совместной жизни начинается во время свадьбы, то это совсем не так. Самая важная история совместной жизни каждого человека началась более миллиарда лет назад, когда наши далекие одноклеточные предки вынуждены были подписать «брачный контракт» с теми, кого мы сейчас называем митохондрии (см. теория симбиогенеза).

Митохондрии имеют две мембраны (внутреннюю и внешнюю) и собственный наследственный материал в виде ДНК (рис.1). На внутренней мембране митохондрий находится система окислительного фосфорилирования, работа которой обеспечивает окисление энергетических субстратов с образованием АТФ.

Жизнь и смерть митохондрий - 1

Рис. 1. Схематическое строение митохондрии

В брачном контракте клетки и митохондрии нет пункта «в болезни и здравии», — и хорошо. Если митохондрия становится старой, клетка может ее убить в процессе митофагии, а митохондрии, в свою очередь, регулируют процесс апоптоза у недееспособных и старых клеток. Если процесс обоюдного контроля качества нарушается, запускаются механизмы старения. Нарушаются механизмы апоптоза, увеличивается количество свободных радикалов, не контролируемых митохондрией. Это вызывает системное воспаление, повреждение ДНК клетки. Таким образом, есть сильная взаимосвязь между МХ дисфункцией, возраст-зависимыми заболеваниями, старением организма и метаболическими дисфункциями [1]. Метаболическая дисфункция – неизменный всадник апокалипсиса старения.
Читать полностью »

Молекулярные и фенотипические биомаркеры старения.

Введение.

Для чего нужны биомаркеры старения?

Старение представляет из себя зависящий от времени физиологический функциональный спад, который поражает большинство живых организмов. И этот процесс напрямую связан с молекулярными изменениями. Он также является самым основным фактором риска для многих неинфекционных заболеваний. С одной стороны, выявление биомаркеров старения будет способствовать дифференциации людей, имеющих один и тот же хронологический возраст, но разные варианты старения. Количественные биомаркеры старения также могут составить группу измерений для «здорового старения» и, кроме этого, прогнозировать продолжительность жизни.

С другой стороны, биомаркеры старения могут также помочь исследователям сузить сферу исследований до конкретных биологических аспектов в попытках объяснить биологические процессы, связанные со старением и возрастными заболеваниями. Здесь мы рассмотрим фенотипические и молекулярные биомаркеры старения.

Фенотипические биомаркеры могут быть неинвазивными, панорамными и легкодоступными, тогда как молекулярные биомаркеры могут отражать некоторые молекулярные механизмы, лежащие в основе возрастного статуса. Этот обзор в основном рассматривает результаты, полученные в исследованиях с людьми (и в некоторых редких случаях – с лабораторными животными (мышами) и нематодами).

Молекулярные биомаркеры старения

Читать полностью »

Разработка терапии старения невозможна без достоверной диагностики старения. Не представляется разумным ожидание смерти человека или наступление смертельно опасного заболевания, чтобы понять: замедлили мы старение или нет, той или иной, терапией. Мы должны сразу видеть объективную картину, вызванными нашими интервенциями против старения.

В клинической практике пока не существует «большой диагностики старения». То есть, нет возможности у пациента и лечащего врача детектировать возрастные изменения на молекулярном уровне, предшествующие наступлению заболеваний. Мы хотим устранить этот пробел, прежде всего описав все основные маркеры возрастных изменения и доступный технологический уровень для их измерения.

Мы продолжим изложение концепции SENS-диагностики старения, исходя из того, что на сегодняшний день программа SENS (достижение пренебрежимого старения инженерными методами) наиболее полно описывает подходы по увеличению продолжительности жизни человека.

Многие слышали о гликозилировании белков, конечных продуктах гликирования (КПГ, AGE) и о вреде, который они наносят организму. Но, следует отметить, что присоединение сахаров к другим молекулам – это далеко не всегда патология. Само гликозилирование является очень распространённым и важным физиологичным процессом в живых организмах. Так, значительная часть всех белков, синтезируемых в клетках, подвергаются ферментативному гликозилированию, что необходимо для их нормального функционирования.

Читать полностью »

Несмотря на непрерывный поток открытий в сфере медицины, некоторые болезни все еще не поддаются исследователям. Ученые ищут свежие идеи в уже хорошо изученных областях.

Война с болезнями: пересмотр старых представлений - 1
Клетка – крошечная и огромная одновременно.

По мере того, как ученые проникают всё глубже в механизмы, которые лежат в основе трудных для излечения болезней (таких как диабет или болезнь Альцгеймера), они все чаще приближаются к границам научных знаний, достигая в поисках ответов самых тёмных закоулков науки.
Впрочем, ответы на сложные вопросы не всегда очевидны, даже если рассматривать их под другим углом, поэтому стоит время от времени возвращаться к известному и пересматривать знакомые факты.
Для примера, недавно так был «открыт» новый орган, скрывавшийся «на виду». Интерстиций – система заполненных жидкостью полостей. Сейчас считается, что это один из крупнейших органов тела.
Читать полностью »

Белки играют важнейшую роль во всех живых организмах, выполняя множество различных функций. Как известно, они состоят из аминокислот. Для того, чтобы исполнять свои функции, белки должны быть не просто цепочкой из определённых аминокислот, но иметь определённую пространственную форму, то есть должным образом укладываться в пространстве. По разным причинам в нормальной укладке белка в нужную структуру может происходить сбой. Тогда вместо неправильно свёрнутые белки, которые имеют свойство объединяться в скопления, агрегаты белков – амилоидные фибриллы. Самым известным из таких агрегатов является β-амилоид (Aβ, Abeta), предположительно связанный с развитием нейропатологий, а также некоторых видов рака и одной из причин деменции у лиц, страдающих синдромом Дауна.

Такие белковые структуры имеют диаметр около 5–10 нм и длину до 800 нм, и состоят из двух и более параллельных разнонаправленных филаментов, образующих специфическую структуру – кросс-бета-складчатую конформацию. Именно такая структура определяет специфическое оптическое свойство амилоида – способность к двойному лучепреломлению. И обнаружение этого свойства положено в основу диагностики амилоидоза. При микроскопии окрашенных красителем конго красным препаратов в поляризованном свете амилоид изменяет красный цвет окраски на зеленое свечение [1].

Читать полностью »

В течение всей жизни организма в клетках образуются компоненты, которые в силу разных причин становятся не способны нормально выполнять свои физиологические функции. Такие структуры, как, к примеру, старые дефектные митохондрии, становятся внутриклеточным «мусором». Если бы такой балласт постоянно накапливался внутри клетки, это бы сделало невозможным протекание нормальных внутриклеточных процессов и привело бы к гибели клетки. Чтобы этого не происходило, в клетках существуют специальные «мусоросжигательные заводы» – лизосомы.

Лизосомы – это одномембранные органеллы диаметром от 0,2 до 2 мкм. Для того, чтобы вместить в себя предназначенные для деградации клеточные структуры, лизосомы способны принимать самые разные формы. В среднем, в одной клетке может быть несколько сотен лизосом. Деградация предназначенных для утилизации клеточных компонентов и макромолекул происходит в лизосоме под воздействием специальных расщепляющих ферментов (всего — около 60 различных типов), главный из которых – кислая фосфатаза.

С течением времени и под воздействием различных факторов лизосома может начать хуже справляться со своими задачами. Что приводит к накоплению «внутриклеточного мусора», мешающего жизнедеятельности клетки. Особенно эта проблема актуальна для постмитотических клеток, таких как клетки сердечных мышц и нейроны. Прогрессирующее накопление внутриклеточного «мусора» во приводит к нарушениям нормального функционирования клеток, что может привести к возникновению заболеваний и ускоренному старению.

SENS-Диагностика. Часть II. Биомаркеры внутриклеточного «мусора» - 1

Отложения липофусцина в клетке сердца. Лф — липофусцин, м — митохондрия, мф — миофибрилла

Читать полностью »