Рубрика «векторизация»

Вашему вниманию предлагается небольшой обзор возможностей векторизации алгоритмов в .NET Framework и .NETCORE. Цель статьи познакомить с этими приёмами тех, кто их вообще не знал и показать, что .NET не сильно отстаёт от "настоящих, компилируемых" языков для нативной
разработки.

Читать полностью »

Михаил Бессмельцев с коллегой разработал новые алгоритмы для векторизации графики - 1
Слева направо: оригинал, оснащённое поле (frame field) и окончательный результат. На базе зашумлённого растрового изображение в оттенках серого вычисляется оснащённое поле, выровненное по линиям картинки. На острые углы типа X- и T-пересечений накладываются векторы по обоим направлениям. Затем из этого поля извлекается топология чертежа — и производится окончательная генерация векторных кривых

Векторизация изображений — основополагающий компонент рабочего процесса в графическом дизайне, технике и компьютерной анимации. Она преобразует черновые рисунки художников и дизайнеров в гладкие кривые, необходимые для редактирования.

Первые алгоритмы векторизации изображений появились в начале 1990-х годов и
использовались в инструментах для редактирования векторной графики, таких как Adobe Illustrator (Live Trace), CorelDRAW (PowerTRACE) и Inkscape. Несмотря на их широкое внедрение в промышленности, эти алгоритмы до сих пор страдают от серьёзных недостатков и находятся в активной разработке. В нескольких индустриях, где векторизация крайне необходима, включая традиционную анимацию и инженерное проектирование, она часто выполняется вручную. Дизайнеры кропотливо обводят отсканированное изображение с помощью инструментов рисования.
Читать полностью »

Современные программы, претендующие на звание эффективных, должны учитывать особенности аппаратного обеспечения, на котором они будут исполняться. В частности, речь идёт о многоядерных процессорах, например, таких, как Intel Xeon и Intel Xeon Phi, о больших размерах кэш-памяти, о наборах инструкций, скажем, Intel AVX2 и Intel AVX-512, позволяющих повысить производительность вычислений.

Оптимизация нейросетевой платформы Caffe для архитектуры Intel - 1
Еле удержались, чтобы не пошутить про руссиано)

Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.
Читать полностью »

Введение

При решении задач моделирования движения объектов в трехмерном пространстве практически всегда требуется использование операций пространственных преобразований, связанных с умножением матриц преобразований и векторов. Для задачи N тел эта операция используется многократно для задания поворота и смещения тела относительно начала координат. Матрица пространственного преобразования имеет размерность 4х4, а размерность вектора, к которому применяется преобразование, соответственно 4x1. Рассмотрим оптимизацию выполнения такой операции с большим числом матриц и векторов под архитектуру Intel® Xeon Phi™.

Читать полностью »

17 сентября 2015 в Москве состоялась очередная ежегодная конференция Intel Software Conference. Программа конференции включала общие выступления (вступительное слово, обзор технологий компании для разработчиков, истории успеха клиентов Intel) и две параллельные сессии: первая была посвящена оптимизации кода и параллельным вычислениям, вторая касалась вопросов мобильной разработки и медиа.

Отчёт по итогам посещения ISC-2015 - 1


По итогам посещения первой сессии, наибольший интерес у меня вызвал доклад на тему «Векторизуем код с Intel Advisor XE». Помимо демонстрации возможностей инструмента по оптимизации кода, рассматривались общие вопросы векторизации, давались рекомендации к написанию векторизуемого кода, а также разбирались примеры конструкций, препятствующих автоматической векторизации, и давались советы по их устранению. Но давайте обо всём по порядку.
Читать полностью »

Векторизация, небольшой баг и семистильный костыль - 1Только что я нашёл решение странного бага, который преследовал меня целую неделю. Эта небольшая эпопея произвела на меня такое впечатление, что я решил поделиться ею с сообществом. Ошибка которую я обнаружил, возможно, присутствует лишь в моей прошивке и скорее всего никогда вас не затронет. Разве что вы решите делать Cordova/PhoneGap/HTML5 приложение с векторной графикой для Windows Phone 8.1 Читать полностью »

Итак, фактическую разработку новых оптимизаций в GCC 5.0 можно считать законченной. Продукт GCC 5.0 находится сейчас в фазе stage3, то есть идет доработка уже внедренных оптимизаций. В данной и последующих статьях я расскажу об оптимизациях, реализованных в GCC 5.0 для х86 и об их влиянии на производительность программ для процессоров линейки Intel Atom и Intel Core. Сегодня речь пойдет о векторизации групповых обращений в память. В последующих статьях я расскажу об ускорениях в 32-битном PIC режиме и дополнительном усилении векторизации.
Читать полностью »

Разработчик на распутье: как векторизовать?!

На тему векторизации написано немало интересного. Вот скажем, отличный пост, который много полезного объясняет по работе автовекторизации, очень рекомендовал бы его к прочтению. Мне интересен другой вопрос. Сейчас в руках у разработчиков большое количество способов, чтобы создать «векторный» код – от чистого ассемблера до того же автовекторизатора. На каком же способе остановиться? Как найти баланс между необходимым и достаточным? Об этом и поговорим.
Читать полностью »

Некоторые простейшие принципы автовекторизацииПредыдущий мой пост был посвящен цикловым перестановочным оптимизациям, проблемам распознавания циклов, разрешению неоднозначности при работе с памятью, определению и важности зависимостей. Теперь я хочу сделать обзор одной из самых эффективных цикловых оптимизаций — автовекторизации. Хочется обсудить вопросы эффективности оптимизации, а также попытаться понять, какие факторы эту эффективность определяют. Всем, кому это интересно – добро пожаловать. При обсуждении я буду ориентироваться на интеловский автовекторизатор и автовекторизатор gcc 4.7.2. gcc я буду исследовать, чтобы подтвердить, что те принципы векторизации, которые я здесь пытаюсь сформулировать, имеют достаточно общую природу. Заодно мне, конечно, хочется понять уровень автовекторизации в gcc. Тут, конечно, есть некий элемент неравенства, поскольку я использую последний компилятор Интел, но не самую топовую версию gcc, но в основном я буду ориентироваться при сравнении на SSE инструкции. (Кстати, Intel активно участвует в разработке автовекторизатора gcc). Поскольку Intel и интеловский компилятор мне ближе, то ему я уделю кое-где больше внимания. Я не претендую на то, что я векторизаторный гуру и буду рад, если кто-то увидит мои ошибки и меня поправит. Букв будет много.
Читать полностью »

Построение системы оптического распознавания структурной информации на примере Imago OCRВ настоящей заметке я расскажу о том, как можно построить систему оптического распознавания структурной информации, опираясь на алгоритмы, применяющиеся в обработке изображений и их реализации в рамках библиотеки OpenCV. За описанием системы стоит активно развивающийся open source проект Imago OCR, который может быть непосредственно полезен в распознавании химических структур, однако в заметке я не буду говорить о химии, а затрону более общие вопросы, решение которых поможет в распознавании структурированной информации различного рода, например таблицы или графики.
Читать полностью »