Компоненты для измерения тока

в 12:40, , рубрики: активное сопротивление, датчик холла, измерение тока, шунтирующий резистор, Электроника для начинающих, метки: , , ,

Компоненты для измерения тока - 1 Измерение тока используется для контроля над разными параметрами, один из которых — мощность на нагрузке. Существует немало считывающих элементов для измерения тока через нагрузку. Их выбор диктуется потребностями каждого конкретного устройства, а также величиной измеряемого тока. Мы обсудим в этой статье три разных типа считывающих компонентов для измерения тока.

1. Шунтовые резисторы
Шунты и шунтовые резисторы — про­стейший вариант токочувствительных элементов. Необходимо лишь помнить о температурном коэффициенте сопро­тивления (ТКС) резистора и избегать его нагрева. Напомним эмпирическое правило выбора токочувствительного резистора: его максимально допусти­мая мощность должна не менее чем в два раза превышать рабочую мощность рассеивания.

Компоненты для измерения тока - 2Изменение температуры резистора в зависимости от величины протекающего через него тока прямо пропорциональ­но отношению номинальной мощности к рассеиваемой.

При выборе токочувствительно­го резистора необходимо учитывать тепловое сопротивление его кор­пуса. Этот параметр, представляющий собой тепловое сопротивление между резистором и его внешней поверхно­стью, является основным показателем, который определяет повышение тем­пературы резистора. В таблице пере­числены тепловые сопротивления стандартных корпусов для поверхност­ного монтажа.

Ширина проводника
При проектировании печатной платы необходимо, чтобы ее медные проводники выдержали максимальный ток, необходимый для устройства.
Для каж­дого устройства необходимо найти разумный компромисс между толщи­ной, шириной проводников и стоимо­стью.

Топология
Длина проводников между токо­измерительным резистором и измери­тельной схемой должна быть как можно меньше, чтобы уменьшить не только сопротивление проводника, но и его паразитные емкость и индуктивность, которые могут внести погрешность в показания быстроменяющегося тока.

Компоненты для измерения тока - 3Подключение сигнальных проводни­ков к токочувствительному резистору
Рекомендуется использовать токо­чувствительный резистор с четырьмя
выводами. Если по какой-либо при­чине применяются резисторы с двумя выводами, то сигнальная шина должна находиться под токочувствительным резистором в том месте, где он соединя­ется с контактной площадкой печатной платы.

Во многих случаях ширина токо­чувствительных резисторов меньше ширины токонесущих шин. Проводники соединяются с этими шинами под углом 45°, чтобы обеспечить равномерное про­текание тока.

Магнитные помехи
Величина генерируемого проводни­ком магнитного поля прямо пропорцио­нальна току через проводник и обратно пропорциональна расстоянию до точки измерения. Необходимо помнить, что сигналь­ные проводники с высоким импе­дансом не должны располагаться параллельно проводникам с большим током. Следует избегать пересечения проводников с большими токами. Если это невозможно по какой-то причине, рекомендуется располагать эти про­водники перпендикулярно друг другу и пересекать тот слой, который наибо­лее удален от сигнального проводника, чтобы ограничить влияние помех.

2. Схемы с активными сопротивлениями

Рассмотрим проектирование токо­чувствительных схем с активными сопротивлениями (direct current resistance, DCR), которые не вызывают дополнительных потерь на измери­тельной цепочке.

Компоненты для измерения тока - 4

Как правило, схемы с активными сопротивлениями используются в низ­ковольтных устройствах, в которых падение напряжения на токочувстви­тельном резисторе составляет значи­тельную долю от величины напряжения питания, подаваемого на нагрузку.
Схема измерения тока с активным сопротивлением представляет собой альтернативу токочувствительным резисторам. В ней используется пара­зитное сопротивление индуктора для измерения тока нагрузки. Эта схема дистанционно измеряет ток через дроссель импульсной цепи регулято­ра. Благодаря отсутствию компонентов, установленных последовательно регулятору на нагрузке, схема работа­ет без потерь.
У правильно согласованной DCR-схемы эффективный импеданс со стороны АЦП равен сопротивлению индуктора. На рисунке представлена простая схема с активным сопротив­лением для измерения тока нагрузки понижающего импульсного преобразо­вателя.

Проектирование DCR-схемы, не оснащенной функцией регулировки, увеличивает погрешность измерений до 35%, что связано с разбросом значений индуктивности и емкости в этой схеме. В некоторых случаях погрешность измерений может увеличиваться до 50%. Но использование простой выравни­вающей схемы с энергонезависимыми цифровыми потенциометрами (digital potentiometers, DCP) существенно повы­шает точность измерения тока.

Итак, DCR-схемы не вносят потерь и занимают мало места на печатной плате. Поскольку эти решения требуют настройки для правильного функционирования, необходимы дополнительные меры при изготовлении устройств на их основе. Большие допуски на отклонения значений реактивных компонентов могут привести к большому разбросу значений между эффективными сопротивлениями схем. Большие температурные коэффициенты индукторов и конденсаторов увеличивают погрешность схемы. В целом, архитектуру схемы с активным сопротивлением можно считать хорошей для измерения больших токов.

3. Датчики Холла
Рассмотрим датчики Холла. Как правило, эти датчики, предназна­ченные для сильноточных устройств, определяют ток через проводник путем измерения индукции его маг­нитного поля. Поскольку измерение тока осуществляется дистанционно, считается, что датчики Холла работают без потерь. Эти устройства предназначены для систем с током выше 200 А, т.к. мощность, рассеиваемая токочув­ствительным резистором, достаточно велика.

Компоненты для измерения тока - 5

На рисунке иллюстрируется базовая концепция метода измерения тока на основе эффекта Холла. В этой схеме ток через проводник опреде­ляется путем измерения индукции генерируемого им магнитного поля В. Величина поля прямо пропорциональ­на протекающему току и определяется его направлением.
Линейные датчики Холла являются активными схемами, потребляющими ток 3-10 мА. Уровень шума этих датчиков составляет около 25 мВ, или 5 Гс. Данные устройства не годятся для устройств с малыми токами или большими расстояниями между проводником и датчиком из-за большого шума и потребляемого тока.

Условия, в которых эксплуатируются сигнальный проводник и датчик, следует учитывать при измерении слабых магнитных полей. Линейные датчики Холла измеряют суммарное магнитное поле в месте нахождения самого датчика. Проводники с током, расположенные рядом с датчиком, изменяют величину измеряемого магнитного поля, ухудшая точность показаний. Датчик также реагирует на другие внешние магнитные поля, возникающие при переключении двигателя или любого другого генерирующего энергию устройства.

Для ограничения влияния внешних магнитных полей на датчики используется магнитный экран, который окружает проводник с током. На рисунке показан пример использования металлического кожуха (клетки Фарадея), экранирующего проводник и датчик.

Недавно на рынке появились датчики Холла с интегрированным проводящим каналом, цепью компенсации и защитным экраном. Интеграция проводящего канала в датчик облегчает расчет выходного сигнала в функции тока через проводник. Однокристальное решение упрощает схему устройства и разработку приложения по измерению тока с помощью датчика Холла.

Несмотря на то, что за последнее время конструкция датчиков на эффекте Холла была усовершенствована, их точность и защита от помех увеличились, применение этой технологии ограничено сильноточными устройствами. Датчики Холла рассеивают меньшую мощность, чем шунтовые резисторы.

Выводы

Шунтовые резисторы — наиболее распространенные токочувствительные элементы благодаря простоте схемного решения и его стоимости, а также точности измерений. DCR-схемы предназначены для устройств с импульсными регуляторами и малыми регулируемыми выходными напряжениями благодаря дистанционному измерению тока. Наконец, датчики Холла предназначены для сильноточных устройств, поскольку рассеиваемая ими мощность меньше, чем у решений на основе эффекта Холла.

У каждого из трех рассмотренных решений имеются свои преимущества и недостатки. Из-за того, что шунтовые резисторы рассеивают мощность, энергоэффективность решений на основе этих компонентов сравнительно невелика. К тому же в устройствах с низким напряжением величина падения напряжения на токочувствительном резисторе может быть соизмерима с рабочим напряжением, что недопустимо. Работа схемы с использованием активного сопротивления (DCR) зависит от согласования конденсатора и индуктора. Оба компонента имеют большие допуски и высокие температурные коэффициенты. Датчик Холла восприимчив к окружающему шуму, и его применение осложняется недостатками схемы. Несмотря на усовершенствование этой технологии, до сих пор ограничивающим фактором на пути ее применения остается точность измерений.

Автор: oWart

Источник

Поделиться новостью

* - обязательные к заполнению поля