- PVSM.RU - https://www.pvsm.ru -

КПД фотоэлементов с нанопроволокой подняли до 17,8%

КПД фотоэлементов с нанопроволокой подняли до 17,8% - 1

Схематичная структура нанопроволочного фотоэлемента

Исследователи из Технического университета Эйндховена (Нидерланды) установили новый рекорд [1] эффективности фотоэлементов с нанопроволокой: 17,8%. Это относительно новый тип солнечных батарей, который изобрели менее десятилетия назад. За такой короткий срок ему удалось приблизиться по эффективности к традиционным видам однослойных фотоэлементов.

Столь быстрый прогресс указывает, что нанопроволочные фотоэлементы — очень перспективная технология. Об этом изобретатели говорили с самого начала. «Фокусировка» фотонов через нанопровода выглядит настолько соблазнительно, что можно мечтать о кардинальном повышении КПД.

КПД фотоэлементов с нанопроволокой подняли до 17,8% - 2
Фотоэлемент со стоячими нановолокнами арсенида галлия. Фото: Нанотехнологический центр Института Нильса Бора (Дания)

В отличие от других типов фотоэлементов, нанопроволочные фотоэлементы состоят не из цельных плотных слоёв, а из решётки вертикальных волокон толщиной примерно 200 нанометров каждое.

В 2013 году Петер Крогструп [2] из Нанотехнологического центра Института Нильса Бора (Дания) вместе с учёными из Федеральной политехнической школы Лозанны (Швейцария) сконструировали прототип фотоэлемента [3] со стоячими нановолокнами арсенида галлия. При обычном солнечном освещении с фотоэлемента сняли ток, соответствующий 180 мА на квадратный сантиметр поверхности. Фактически, стоячие нановолокна концентрировали свет с площади, в 15 раз больше их суммарных сечений.

Такие феноменальные показатели объясняются резонансом волн видимого света, длина которых меньше сечения стоячего волокна. Сталкиваясь со стоячими волокнами, соседние волны входят в резонанс. Решётка стоячих волокон как пылесосом «всасывает» в себя окружающий свет.

Если принять «читерство» с резонансом, то нановолокна вообще должны преодолеть фундаментальный предел Шокли-Квайссера [4], который составляет 33,7% для ячейки с одним p-n переходом, 42% для двухслойной ячейки, 49% для трёхслойной и 68% для гипотетической ячейки с бесконечным количеством слоёв.

Рекордный КПД разных типов фотоэлементов, 1976-2016 гг
КПД фотоэлементов с нанопроволокой подняли до 17,8% - 3

Вскоре после первых прототипов другие учёные начали экспериментировать с реальными нанопроволочными фотоэлементами. КПД таких элементов стал быстро расти.

Сейчас группа исследователей из Технического университета Эйндховена впервые продемонстрировала в реальных условиях КПД нанопроволочного фотоэлемента 17,8%. Как считают исследователи, это далеко не предел. Авторы научной работы Дик ван Дам (Dick van Dam) и Инчао Цуй (Yingchao Cui) уверены, что рекорд быстро падёт. Они предсказывают, что рубеж КПД в 20% будет преодолён в течение двух лет. Повышение КПД связано с теоретической работой физиков, которые рассчитали более эффективную форму и диаметр нановолокон, а также их взаимное расположение. Их достижение — именно в оптимизации «леса» нановолокон, что позволило снизить количество дефектов.

Предыдущее рекордное достижение для этого типа фотоэлементов составляло 15,3%. Такой результат показали исследователи из Университета Лунда (Швеция). Считается, что теоретический предел КПД для нанопроволочного фотоэлемента составляет 46%, то есть намного выше фундаментального предела Шокли-Квайссера для традиционных элементов, где не задействуется эффект резонанса.

Учёные подчёркивают, что ещё одним преимуществом нанопроволочных фотоэлементов является их теоретическая дешевизна в массовом производстве, даже по сравнению с обкатанной десятилетиями технологией изготовления традиционных фотоячеек. Важное преимущество, что для изготовления новых ячеек требуется в пять раз меньше материала. Это не только дешевле и энергоэффективнее. Чем меньше материала — тем меньше дефектов и бракованных партий. По крайней мере, теоретически.

Чтобы нанопроволочные фотоэлементы стали коммерчески привлекательными, они должны сравняться с обычными элементами по стоимости и КПД. Для этого нужно довести КПД хотя бы до 25% и усовершенствовать технический процесс их изготовления. Дальнейшее удешевление может быть достигнуто путём перехода от использования редких металлов, таких арсенид галлия и фосфид индия, к более распространённому кремнию. Ещё один путь удешевления — изобретение техпроцесса по производству фотоэлементов без использования толстой подложки.

За свою работу по расчёту и изготовлению нанопроволочных фотоэлементов с рекородным КПД Дик ван Дам 17 октября 2016 года получил докторскую степень (PhD) в Техническом университете Эйндховена. К сожалению, его докторская диссертация не опубликована в открытом доступе. До проведения независимой рецензии и публикации научной статьи в официальном журнале автор воздерживается от разглашения [5] технических деталей изобретения.

В пресс-релизе [1] университета особо отмечается, что доктор ван Дам известен как победитель сезона телевизионной викторины Met het Mes op Tafel [6], в которой сочетаются покер и эрудиция.

Автор: alizar

Источник [7]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/e-nergiya-i-e-lementy-pitaniya/202192

Ссылки в тексте:

[1] установили новый рекорд: https://www.tue.nl/en/university/news-and-press/news/16-10-2016-tu-eindhoven-breaks-world-record-for-nanowire-solar-cells/

[2] Петер Крогструп: http://www.nbi.ku.dk/english/staff/?pure=en/persons/276614

[3] сконструировали прототип фотоэлемента: http://www.nbi.ku.dk/english/news/news13/nanowire-solar-cells-raises-efficiency-limit/

[4] предел Шокли-Квайссера: https://en.wikipedia.org/wiki/Shockley–Queisser_limit

[5] воздерживается от разглашения: http://spectrum.ieee.org/nanoclast/green-tech/solar/new-record-for-nanowirebased-solar-cells-achieved

[6] Met het Mes op Tafel: https://nl.wikipedia.org/wiki/Met_het_Mes_op_Tafel

[7] Источник: https://geektimes.ru/post/281778/