- PVSM.RU - https://www.pvsm.ru -

Магнитная память будущего. Терагерцевое излучение применили для сверхбыстрой перезаписи спинов

Магнитная память будущего. Терагерцевое излучение применили для сверхбыстрой перезаписи спинов - 1

Сверхбыстрое управление намагниченностью материалов — краеугольный камень современной фотоники. В будущем такие технологии могут найти применение в оптических компьютерах и терагерцевой электронике. В последние годы сделан целый ряд успешных экспериментов в этой области. Среди них изменение спина в антиферромагнетиках под воздействием света за несколько пикосекунд [1], контроль за колебаниями магнитных моментов антиферромагнетика парой фемтосекундных лазеров [2], фазовый переход от ферромагнетика к антиферромагнетику под воздействием света [3] в течение фемтосекунд и др. Несмотря на замечательный прогресс в этой области, в экспериментах бóльшая часть световой энергии не задействуется непосредственно во взаимодействии света с намагниченным материалом. Это означает, что на практике потребуются значительные усилия на отвод энергии.

Коллектив голландских, немецких и российских учёных из Института общей физики им. Прохорова РАН, московского технологического университета (МИРЭА) и МФТИ разработали гораздо более эффективный и практичный способ [4] сверхбыстрого управления намагниченностью материала. Вместо видимого и инфракрасного света они задействовали электромагнитные импульсы терагерцевого излучения. Таким образом, учёные предлагают использовать для перезаписи информации в компьютерной памяти будущего не лазерные импульсы, а Т-лучи.

Терагерцевое излучение — вид электромагнитного излучения, спектр частот которого расположен между инфракрасным и сверхвысокочастотным диапазонами с длиной волны от 1 до 0,1 мм. Т-лучи легко проходят сквозь большинство диэлектриков, но сильно поглощаются проводящими материалами и некоторыми диэлектриками.

Эксперименты по управлению намагниченностью с помощью терагерцевых импульсов проводились и раньше, но там задействовались другие механизмы взаимодействия. Российские физики предложили концептуально новый универсальный механизм.

Дело в том, что сила и направление магнитной анизотропии практически во всех материалах определяется тем, что орбитали электронов объединяются в упорядоченные спины. Поэтому сверхкороткий импульс электрического поля, изменяющий орбитали электронов, может привести к внезапному изменению магнитной анизотропии. Учёные собрали экспериментальную установку и проверили теорию, что изменение магнитной анизотропии приводит к колебаниям магнонов с большими амплитудами, которые квадратично зависят от силы терагерцевого поля.

Магнон — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. Такой отдельной частицы на самом деле не существует самой по себе, но использование такого понятия существенно упрощает описание процесса, который в реальности происходит на квантовом уровне.

Авторы научной работы пишут, что в терагерцевом спектральном диапазоне эту концепцию (управляемое изменение магнитной анизотропии и намагниченности) можно применить к любому материалу, в котором изменения электронных орбиталей приводят к изменению магнитной анизотропии. Например, это различные оксиды с ионами 3d и 4f. Среди них — разнообразные ортоферриты, манганиты и ферробораты, а также различные соединения с 3d-ионами, такие как гематит α-Fe2O3

До российско-немецкого эксперимента подобные свойства терагерцевого излучения оставались, по большому счёту, неизученными.

Фундаментальная идея показана на иллюстрации. Для опыта использовали антиферромагнетик TmFeO3 — ортоферрит тулия. Этот материал кристаллизируется в деформированной структуре перовскита.

Магнитная память будущего. Терагерцевое излучение применили для сверхбыстрой перезаписи спинов - 2

Эксперимент показал, что пучки Т-лучей очень эффективно с точки зрения энергозатрат меняют магнитные свойства и ионов железа, и ионов тулия.

Магнитная память будущего. Терагерцевое излучение применили для сверхбыстрой перезаписи спинов - 3

«Мы сделали важный шаг на пути к терагерцовой электронике: показали качественно новый подход к контролю намагниченности с помощью коротких импульсов терагерцового излучения. Насколько нам известно, наша работа — первый пример подобного применения Т-лучей», — заявил [5] Анатолий Звездин из Московского физико-технического института в Долгопрудном.

По мнению специалистов, в оптических компьютерах именно терагерцовое излучение уместно использовать для сверхскоростной передачи информации, записи информации на магнитные носители и т.д. Кроме того, Т-лучи могут найти применение для наблюдения за работой живых клеток в режиме реального времени и множества других целей.

Анатолий Звездин отметил, что данные эксперименты являются продолжением тех исследований, которые советские ученые вели в Московском государственном университете: «В СССР ортоферриты исследовала группа в МГУ, и у нас был приоритет в этой области. В каком-то смысле, наша работа — продолжение тех исследований», — сказал он.

Научная работа опубликована [4] 3 октября 2016 года в журнале Nature (doi: 10.1038/nphoton.2016.181).

Автор: alizar

Источник [6]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/fizika/198790

Ссылки в тексте:

[1] изменение спина в антиферромагнетиках под воздействием света за несколько пикосекунд: http://www.nature.com/nature/journal/v429/n6994/full/nature02659.html

[2] контроль за колебаниями магнитных моментов антиферромагнетика парой фемтосекундных лазеров: http://www.nature.com/articles/ncomms1366

[3] фазовый переход от ферромагнетика к антиферромагнетику под воздействием света: http://www.nature.com/nature/journal/v496/n7443/full/nature11934.html

[4] более эффективный и практичный способ: http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.181.html

[5] заявил: https://ria.ru/science/20161010/1478883223.html

[6] Источник: https://geektimes.ru/post/281436/