Немножко про радиацию

в 5:37, , рубрики: дозиметр, дозиметр для смартфона, Научно-популярное, радиация, физика

Я уже привык к тому, что для большинства людей радиация — область мифологии, а не науки. Но тут наткнулся на эту запись, в которой уже типа профессионал объясняет безумную опасность советских датчиков дыма. После этого решил, что стоит таки заняться просветительством.

Вред радиации

Каков ответ на вопрос «вредна ли радиация»? Такой же, как и на вопросы «вредна ли температура?» или «вреден ли свет?». Вредно не само явление, а выход его численных параметров за оптимальные для жизни пределы. Многочисленные опыты на животных показали небольшое увеличение средней продолжительности жизни, усиление иммунитета и т.д. при некотором дополнительном, относительно природного, облучении. Они же показали уменьшение всех этих параметров при дальнейшем увеличении дозы радиации. Разумеется, не было никакой универсальной для всех видов животных дозы, дающей оптимальный результат, у всех она разная. Никто не знает, какой уровень радиации был бы идеальным для человека, т.к. для этого пришлось бы поставить контролируемые опыты на десятках тысяч людей.
Зато известно другое: к разным факторам человек имеет разную чувствительность. Так, например, человек хорошо себя чувствует при температуре 300 К (27 °C), но если изменить её всего на 10%, до -3 °C или 57 °C, то без защитного снаряжения (соответствующей одежды) лишь немногие тренированные люди смогут выжить. Если изменить её на 20%, до -33 °C или 87 °C, то ни один человек без защиты долго не выживет. А вот плавное изменение освещённости в 10-20 раз человек не замечает вообще. Разница между ярким искусственным освещением и освещённостью на улице в солнечный день — около 1000 раз… Разумеется, в полной темноте человек хоть и может выживать, но с большим трудом, а слишком яркое освещение уже вызовет проблему с температурой. Но в общем и целом допустимый диапазон изменений — многие тысячи раз.
Какова чувствительность человека к радиационному облучению? Достаточно низкая. Природный уровень радиации в разных уголках планеты меняется крайне значительно. Если в среднем по всей Земле человек получает дозу 2,4 мЗв в год, то в некоторых местах — лишь 1 мЗв, а в других — 10, а то и 15-20 с лишним. Но никаких достоверных данных, показывающих, что этот разброс оказывает влияние на здоровье, не обнаружено. Так, например, повышенным дозам облучения подвергаются жители Швейцарии, которая славится высокой продолжительностью жизни своих граждан. Ещё больше дозы радиации получают космонавты — около 0,5 мЗв в… день! Т.е. за месяц они получают столько, сколько жители самых радиоактивных уголков планеты за год.
Конечно, это не повод лезть на экскурсию под саркофаг четвёртого энергоблока ЧАЭС. Там вы за минуту получите дозу больше, чем за месяц на МКС, а такое облучение совершенно достоверно оказывает крайне неблагоприятное влияние на продолжительность жизни. Но и бояться всего и вся тоже не стоит.

Единицы измерения радиации

В прошлом разделе я всюду использовал единицу «мЗв». Это — «миллизиветр». Давайте разберёмся, что это такое, и какие вообще единицы измерения тут есть.
Начнём с того, что на слуху — рентгена (Р). В рентгенах измеряется только исключительно рентгеновское и гамма-излучение. Этой единицей измеряют так называемую экспозиционную дозу, т.е. то, сколько ионов рождает излучение в сухом воздухе. Она предельно удобна при измерениях с помощью ионизационной камеры, т.к. этот тип датчика измеряет именно количество ионов (точнее — их суммарный заряд). Дозу в рентгенах можно получить напрямую, в то время как все остальные дозы измеряются опосредованно, оставляя простор для ошибок измерений. Но, с другой стороны, эта доза не указывает напрямую то, какой вред излучение наносит человеку, да и для бета- и альфа-излучения с прочими нейтронами ею пользоваться нельзя, она для них не определена.
Следующая единица — это рад. Рад — это единица поглощённой дозы любого излучения. Т.е. то, сколько энергии ионизирующего излучения поглотила единица массы вещества. Рад равен 100 эрг на 1 грамм или 0,01 Дж на 1 кг. Также в радах измеряется керма. Керма — это сколько кинетической энергии получают заряженные частицы вещества при поглощении этим веществом ионизирующего излучения, не несущего заряд (гамма, нейтроны). В большинстве случаев поглощённая доза и керма весьма точно совпадают, так что не забивайте себе этим голову. Если воздух поглотит 0,88 рад гамма-излучения, то в нём появится ионов на 1 Р. Можно условно сказать, что 1 Р = 0,88 рад, а 1 рад гамма-излучения равен 1,14 Р. Впрочем, т.к. всё равно воздух неточно соответствует тканям человека, да и ткани есть разные, плюс погрешность дозиметров редко бывает меньше 20%, обычно считают 1 Р = 1 рад. Недостатком рада, а точнее — поглощённой дозы, является то, что она не учитывает существенно разное действие на организм различных видов излучения.
Следующая единица — это биологический эквивалент рада (бэр). Бэр — это единица эквивалентной дозы. Т.е. тут учитывается, что быстрые нейтроны при той же энергии нанесут в 10, а альфа-частицы — в 20 раз больше вреда организму, чем гамма- или бета-излучение. Соответствующие коэффициенты есть (или могут быть получены) для абсолютно любых видов ионизирующего излучения. Также в бэрах измеряется эффективная доза, в которой учитывается различная чувствительность разных органов. Если человек облучается полностью равномерно, то эквивалентная и эффективная доза совпадают, но в случае, если какие-то части тела облучаются сильнее, а какие-то слабее, могут быть заметные различия. Так, например, руки выдерживают весьма большие дозы, а вот спинной мозг очень чувствителен к облучению. В бэрах также измеряется амбивалентный эквивалент дозы — такая «сферическая доза в вакууме». Без шуток, она определена для 30 см шара строго нормированного состава, используется для всяких тестов, моделирования и т.д.
Далее у нас идёт грей (Гр). Грей — это аналог рада в системе СИ. 1 Гр = 1 Дж/кг = 100 рад.
Ну и, наконец, зиверт (Зв). Это — аналог бэра в СИ. 1 Зв = 100 бэр. Соответственно, мЗв, который я использовал в первом разделе, равен 0,001 Зв или 0,1 бэр.
Кроме дозы есть ещё активность радиоактивного вещества. Т.е. то, сколько распадов в нём происходит за определённое время. Активность измеряют либо в кюри (Ки), либо в беккерелях (Бк). Кюри — активность одного грамма радия-226, очень большая величина. Беккерель — один распад в секунду, очень малая величина. 1 Ки = 37 ГБк.
Чтобы было проще ориентироваться, приведу некоторые числа:
— уровень гамма-радиации в моей комнате примерно 7 мкР/ч, 0,07 мкГр/ч и 0,07 мкЗв/ч (мощности соответственно экспозиционной, поглощённой и эквивалентной доз). Уровень гамма-радиации на отделанных гранитом платформах Московского метро примерно вдвое выше (плюс доза альфа-облучения лёгких от повышенного уровня радона);
— единовременная доза, при которой может начаться лучевая болезнь — 100 Р, 1 Гр и 1 Зв;
— активность природного радиоактивного калия-40 в банане составляет примерно 20 Бк, в килограмме бананов — 130 Бк.

Приборы измерения радиации

В принципе есть огромное количество разных приборов и методов измерения радиации, но я тут расскажу только о том, с чем в принципе может столкнуться человек, не работающий в соответствующих направлениях.
В магазинах вы можете встретить «индикаторы радиоактивности», «дозиметры» и «дозиметры-радиометры».
Первые — это приборы, которые не проходят сколько-нибудь существенных испытаний и вообще на точность измерений не претендуют. Почти всегда они сделаны на базе счётчика Гейгера типа СБМ-20. Реже — на базе миниатюрного СБМ-21 или на базе чувствительных к альфа-излучению счётчиков, например Бета-1 или Бета-2. Многие считают, что такие приборы могут занижать показания. Некоторые «профессионалы» заявляют, что при низкой энергии гамма-излучения, на уровне 30-100 кэВ, приборы на СБМ-20 и СБМ-21 занижают в разы, а ниже вообще не фиксируют. Мой же опыт показывает, что всё с точностью до наоборот: при низкой энергии гамма-излучения (опыты ставились с 59 кэВ) они в разы завышают свои показания. Конечно, гамма-излучение совсем низкой энергии они не зафиксируют, но оно и не представляет большой опасности, т.к. поглощается ещё в коже. Бета-1 и Бета-2 фиксируют все виды излучения, причём ещё сильнее завышают показания при низкой энергии гамма-излучения.
Дозиметром честный производитель обычно называет прибор, точности измерения которым уделялось какое-никакое внимание. Чаще всего они тоже сделаны на базе СБМ-20, но тот уже закрыт специальным съёмным фильтром, который ослабляет гамма-излучение низкой энергии и полностью поглощает бета-излучение. Это позволяет точно измерить уровень гамма-излучения в широком диапазоне энергий. Также эти приборы обычно умеют интегрировать показания за длительное время, показывая не только мощность дозы, но и саму дозу. Приборы по-лучше содержат датчики Бета-1, Бета-2 или другие со слюдяным окном для бета-излучения низкой энергии и альфа-излучения, тоже оснащены фильтрами. Совсем дорогие приборы могут использовать полупроводниковые или сцинтилляторные датчики, которые имеют огромную чувствительность к гамма-излучению и не просто фиксируют частицы, а измеряют их энергию. Это позволяет максимально точно измерить дозу, а некоторые модели даже умеют определять изотопы, которые вызывают облучение. Впрочем, полупроводники и сцинтилляторы могут сыграть злую шутку: у них чувствительность очень сильно зависит от энергии, так что измерять её не просто можно, а обязательно нужно. И нужно качественно учесть зависимость чувствительности от энергии. Если такой датчик воткнули в прибор только для громкой надписи «сцинтилляторный», то точность измерений у него может быть хуже, чем у дешёвых индикаторов радиоактивности.
Дозиметр-радиометр — это прибор, который кроме дозы гамма-излучения измеряет ещё и поток бета-частиц (при соответствующих датчиках — и альфа). Два предыдущих пункта тоже фиксируют бета-излучение (дозиметры — при снятом фильтре), но они продолжают пересчитывать показания в рентгены или зиверты, как если бы это было гамма-излучение. Результат получается абсолютно неправильным: если для гамма-излучения вероятность фиксации частицы счётчиком Гейгера прямо пропорциональна его энергии в довольно широком диапазоне (где-то от 0,3 до 1,5 МэВ), причём этот диапазон расширяется фильтрами вниз где-то до 0,03-0,05 МэВ, то для бета-излучения ничего подобного нет. В первом приближении выше определённой границы энергии датчик фиксирует почти все бета-частицы, а ниже — ни одной. Аналогично и с альфа-излучением (если счётчик его в принципе фиксирует). Радиометру же можно «сказать», что ты сейчас измеряешь бета-излучение, и тогда он будет пересчитывать показания в число частиц на квадратный сантиметр площади сечения датчика в единицу времени. Сначала измеряешь с фильтром, чтобы выяснить гамма-фон, потом без него, вычитаешь из второго первое — и вот поток бета-частиц. Для альфа всё тоже самое, только там ещё добавляется второй фильтр, который задерживает его, но пропускает бета-частицы. Иногда он встроен, иногда надо самому брать подручный, типа листа бумаги.
Есть ещё программные дозиметры для смартфонов, использующие закрытую непрозрачным материалом фотокамеру в роли эрзац детектора. Они реально работают, но по моему опыту ждать от них точности не приходится, могут ошибаться в разы в любую сторону.
Стоит также отметить, что при небольших уровнях радиации показания всех приборов оказываются не слишком точными: они фиксируют за цикл измерения лишь порядка десятка частиц, так что статистическая погрешность становится сравнимой с измеряемой величиной. Если сейчас прибор показывает 0,07 мкЗв/ч, а через минуту — 0,14 мкЗв/ч, это абсолютно не значит, что уровень радиации возрос в два раза. Скорее всего он как был 0,10 мкЗв/ч, так и остался.

Индикатор радиоактивности на месте радиоактивного заражения
Индикатор радиоактивности на месте радиоактивного заражения

Профессиональный сцинтилляторный дозиметр на месте радиоактивного заражения (уровень радиации - цифры внизу)
Профессиональный сцинтилляторный дозиметр на месте радиоактивного заражения (уровень радиации — цифры внизу)

Программный дозиметр. В данном конкретном случае в 3-4 раза занижает показания
Программный дозиметр. В данном конкретном случае в 3-4 раза занижает показания

Радиация в быту

Какие источники радиации можно встретить в быту? Самые разные.
Например, всё, что содержит много калия, калийные удобрения, диетическая соль с добавкой калия и т.д., радиоактивно из-за содержания природного калия-40. Человек, кстати, тоже радиоактивен, т.к. калий — неотъемлемый элемент организма.
Если же брать источники по-серьёзнее, то это — торированные сварочные электроды (например, марки WT-20), некоторые старые объективы с добавкой оксида тория в стекло, некоторые старые часы и прочие приборы с радиевой подсветкой шкалы (сейчас подсветка уже не работает из-за выгорания люминофора, радий же сохраняется тысячи лет), ионизационные датчики дыма на америции-241, старые ионизационные датчики дыма на плутонии-239 (оружейного качества, кстати) и т.д.
До тех пор, пока всё это остаётся целым и невредимым, оно, как правило, опасности не представляет. Проблемы могут возникнуть только при разрушении приборов, т.к. в этом случае частички альфа-активных материалов могут попасть в лёгкие и там создать сильное локальное облучение. Риск раковых заболеваний при этом сильно возрастает. Кстати, рак лёгких у курильщиков в заметной степени вызван тем же: табак содержит альфа-активный полоний-210, тот самый, которым Литвиненко отравили.
Также эти все вещи совершенно законно использовать без специальных разрешений: лишь однажды мне попался манометр, уровень излучения которого выходил за допустимые для безлицензионного использования пределы (1 мкЗв/ч на расстоянии 10 см от поверхности), но он был от истребителя МИГ-21. Впрочем, законы у нас в стране выполняются не-очень… «Специалисты» запросто могут заявить, что всё, что имеет уровень радиации более 30 мкР/ч прямо на поверхности, необходимо изымать. А судьи не очень-то разбираются в таких тонкостях, как нормы радиационной безопасности… Имеется как минимум один прецедент, когда у человека суд отобрал объектив, и не посадили только потому, что он про его радиоактивность не знал. По всем официальным нормам этот объектив можно было использовать.
Реально большую опасность представляют только промышленные источники радиации, действующие рентгеновские аппараты и неконтролируемые аварийные выбросы. К счастью, столкнуться с ними простому человеку не так-то просто. Хотя история прецеденты знает…

Плутониевый источник из датчика дыма РИД-1
Плутониевый источник из датчика дыма РИД-1. Тот самый, про который рассказывают страшилки в статье, спровоцировавшей написание этого текста. Пока цел, существенной опасности не представляет.

Относительно безопасный прибор с радиевой подсветкой
Относительно безопасный прибор с радиевой подсветкой

Большое скопление относительно безопасных приборов может быть уже не таким безопасным
Большое скопление относительно безопасных приборов может быть уже не таким безопасным

Редкий пример прибора с радиевой подсветкой, в десяток с лишним раз выходящий за допустимые пределы
Редкий пример прибора с радиевой подсветкой, в десяток с лишним раз выходящий за допустимые пределы

Промышленный источник, который может представлять реальную опасность
Промышленный источник, который может представлять реальную опасность

Заражённая местность
Заражённая местность

Результат неконтролируемого аварийного выброса полвека назад
Результат неконтролируемого аварийного выброса полвека назад

Активная зона ядерного реактора
Активная зона ядерного реактора

Автор: egigd

Источник

Поделиться

* - обязательные к заполнению поля