Как справедливо порезать торт

в 15:13, , рубрики: задача раздела, математика, Научно-популярное, справедливая делёжка, торт, метки: , ,

Специалисты по информатике разработали алгоритм справедливого раздела пирога для любого количества людей

Как справедливо порезать торт - 1

Двое молодых учёных, специалистов в области информатики, придумали, как честно поделить торт между любым количеством людей, решив задачу, над которой математики бились десятилетиями. Их работа удивила многих исследователей, считавших такое разделение невозможным в принципе.

Делёж пирога – это метафора для широкого круга реальных задач, включающих деление некоего непрерывного объекта, будь это торт или надел земли, между людьми, по-разному оценивающими его свойства. Одному нравится шоколадное покрытие, другой хочет получить кремовые цветочки. С библейских времён известен алгоритм деления такого объекта между двумя людьми, такой, чтобы никто не завидовал другому: один человек делит торт на две равные для него части, а другой выбирает одну из них. В Книге Бытия Авраам (тогда ещё известный, как Аврам) и Лот использовали этот метод для раздела земли, когда Авраам придумывал разделение, а Лот выбирал между Иорданом и Ханааном.

В 1960-х математики придумали алгоритм для подобного разделения пирога «без зависти» уже для трёх человек. Но до сих пор лучшим решением задачи для количества людей больше трёх была процедура, созданная в 1995 году политологом Стивеном Брамсом [Steven Brams] из Нью-Йоркского университета и математиком Аланом Тейлором [Alan Taylor] из Юнион-колледжа. Она гарантировала «справедливую» делёжку пирога, но с одним условием – процедура была «неограниченной», то есть число шагов, необходимое для делёжки, могло оказаться сколь угодно большим.

Алгоритм Брамса-Тейлора в своё время был назван прорывным, но «его неограниченность, по-моему, была большим недостатком», говорит Ариель Прокаччиа [Ariel Procaccia], специалист по информатике из Университета Карнеги-Меллон, один из создателей Spliddit, бесплатного онлайн-инструмента для справедливого раздела различных задач, от домашних обязанностей до платы за совместную аренду квартиры.

За последние 50 лет многие математики и специалисты по информатике, включая Прокаччиа, убедили себя, что ограниченного справедливого алгоритма по разделу торта на n частей не существует.

«Именно эта задача привела меня в область справедливых разделений»,- говорит Уолтер Стромквист [Walter Stromquist], профессор математики в Колледже Брина Мавра в Пенсильвании, достигший неплохих результатов в задаче делёжки торта в 1980. «Всю жизнь я думал, что я вернусь к этой задаче в свободное время и докажу, что такое расширение результата невозможно в принципе».

Но, в апреле два специалиста по информатике опровергли эти ожидания, опубликовав алгоритм справедливой делёжки торта со временем работы, зависящим от количества участников дележа, а не от их личных предпочтений. Один из учёных, 27-летний Саймон Макензи [Simon Mackenzie], доктор наук из Карнеги-Меллон, представлял свою работу 10 октября на 57-м ежегодном симпозиуме IEEE по основам информатики.

Алгоритм чрезвычайно сложный. Раздел торта между n участниками может потребовать до nnnnnn шагов, с примерно таким же количеством разрезов. Даже для небольшого количества участников это число превышает количество атомов во Вселенной. Но у исследователей уже есть идеи по упрощению и ускорению алгоритма, по словам второго участника команды, Хариса Азиза [Haris Aziz], 35-летнего специалиста по информатике из Университета Нового Южного Уэльса, работающего в австралийской группе исследования данных Data61.

Специалисты, исследующие теорию справедливого деления, по словам Прокаччиа, считают это «однозначно лучшим результатом за десятилетия».

Кусочки торта

Алгоритм Азиза и Макензи основан на элегантной процедуре, независимо придуманной математиками Джоном Селфриджем [John Selfridge] и Джоном Конвейем в 1960-х, позволяющим справедливо разделить торт на троих.

Как справедливо порезать торт - 2

Если Алиса, Боб и Чарли (A, B, C) хотят разделить торт, алгоритм начинается с того, что Чарли делит торт на три куска, которые для него выглядят равноценными. Алиса и Боб выбирают куски, нравящиеся им. Если они выберут разные куски – вуаля, каждый получает то, что хотел.

Если Алиса и Боб выберут один кусок, тогда Боб отрезает небольшую часть от этого куска так, чтобы кусок стал равноценен, с его точки зрения, другому куску торта – тому, который бы Боб выбрал во вторую очередь. Отрезанный остаточек откладывается. Теперь Алиса должна выбрать лучший для себя кусок из оставшихся трёх, а затем выбирает Боб – с условием, что он возьмёт обрезанный им кусок, если Алиса его не выберет. Чарли получает третий кусок.

В результате никто никому не завидует. Алиса выбирала первой. Боб получил один из двух одинаково ценных для него кусков. Чарли получил один из трёх изначальных кусков, которые он резал сам.

Остаётся лишь небольшой отрезанный остаточек. Но его можно разделить, не начиная алгоритм сначала и не попадая в бесконечный цикл обрезаний и выборов, поскольку Чарли в любом случае удовлетворён своим куском – и даже если бы тот, кому достался обрезанный кусок, получил бы в довесок к нему весь остаточек целиком, для Чарли это не выглядело бы нечестным, потому что обрезанный кусок и остаточек в сумме дадут кусок торта, эквивалентный его куску – ведь он изначально сам эти куски и нарезал. Азиз и Макензи описывают такое положение Чарли, как «доминирующее».

Теперь, если, к примеру, Алисе достался обрезанный кусок, то Боб режет обрезки на три части, эквивалентные с его точки зрения, Алиса из этих кусков выбирает один себе, затем выбирает Чарли, затем Боб. Все счастливы: Алиса выбирала первой, Чарли получает кусок лучше, чем у Боба (и ему всё равно, сколько взяла Алиса), а с точки зрения Боба все три куска равноценны.

Брамс и Тейлор использовали свойство «доминирования» (но с другим именем) для разработки своего алгоритма 1995 года, но они не дожали свою идею до появления ограниченного алгоритма. В следующие 20 лет никто не добился лучших результатов. «И не из-за недостатка попыток», как говорит Прокаччиа.

Непрофессиональные делители тортов

Когда Азиз и Макензи (АиМ) решили взяться за эту задачу пару лет назад, они были новичками в задаче дележа торта. «У нас не было столько опыта, как у людей, интенсивно работавших над ней,- говорит Азиз. – Хотя обычно это недостаток, в нашем случае он был преимуществом, поскольку мы думали по-другому».

АиМ начали с изучения задачи дележа на трёх участников с нуля, и в результате анализа пришли к ограниченному справедливому алгоритму для четырёх участников, опубликованному ими в прошлом году.

Им не удалось сразу показать, как расширить свой алгоритм на число участников, большее четырёх, но они с энтузиазмом занялись этой задачей. «После отправки работы, касавшейся четырёх участников, мы очень хотели побыстрее продолжить работу, пока кто-нибудь более опытный и умный не обобщит её самостоятельно до случая с n участниками»,- говорит Азиз. И примерно через год их поиски увенчались успехом.

Как и алгоритм Селфриджа-Конвея, протокол АиМ постоянно предлагает разным участникам разрезать торт на n равных частей, а другим – делать отрезы и выбирать куски торта. Но в алгоритме есть и другие шаги, например периодический обмен кусками тортов специальным образом, с целью увеличения количества доминирующих взаимоотношений между участниками.

Эти отношения позволяют АиМ уменьшить сложность задаче. Если, допустим, три участника доминируют над остальными, их уже можно отправлять есть свои куски торта – они будут довольны вне зависимости от того, кто получит остатки. После этого остаётся меньшее число участников, и после ограниченного количества таких шагов все остаются довольными и весь торт оказывается поделён.

«Оглядываясь назад, на сложность алгоритма, становится неудивительно, что его разработка потребовала столько времени»,- говорит Прокаччиа. Но АиМ уже считают, что могут упростить алгоритм, чтобы он не требовал обмена кусками и проходил всего за nnn шагов. По словам Азиза, они уже работают над этими результатами.

Брамс предупреждает, что и у более простого алгоритма не будет практического применения – ведь куски торта, полученные участниками, будут включать множество мелких крошек с разных частей торта. Такой подход не особенно-то полезен, если вы, например, проводите раздел земли.

Но для специалистов по математике и информатике, изучающих задачу, новый результат «обнуляет всю тему», говорит Стромквист.

Теперь, когда исследователям известно, что торт можно разделить за ограниченное число шагов, следующим шагом, по словам Прокаччиа, будет понимание большого разрыва между верхним ограничением количества шагов по методу АиМ, и нижним ограничением необходимого для этого количества шагов. Прокаччиа уже доказал ранее, что алгоритм справедливого разделения торта не может проходить менее, чем за n2 шагов – но это количество шагов крошечное по сравнению с nnnnnn и даже с nnn.

Азиз говорит, что исследователям теперь предстоит понять, как сократить этот разрыв. «Думаю, что в обоих направлениях может быть достигнут прогресс».

Автор: SLY_G

Источник

Поделиться новостью

* - обязательные к заполнению поля