Российские учёные завершили первый этап строительства крупнейшей нейтринной обсерватории на озере Байкал

в 17:40, , рубрики: байкал, детектор, космонавтика, Научно-популярное, нейтрино, обсерватория

image
Оптический модуль

Совместными усилиями ученых Института ядерных исследований Российской академии наук (Москва), Объединенного института ядерных исследований (Дубна) и других участников т.н. «Коллаборации Байкал» введён в эксплуатацию первый кластер глубоководного нейтринного телескопа «Дубна» на озере Байкал. Кластер был развернут в первых числах апреля 2015 года

image

Мало кто знает, что Байкал – не только крупнейшее пресноводное озеро в мире, но и лаборатория по отслеживанию нейтрино. На дне озера находится Байкальский нейтринный телескоп, он же НТ1000, также известный как Baikal-GVD (Gigaton Volume Detector). Это комплекс глубоководных приборов, занимающийся детектированием нейтрино.

Идея регистрации элементарных частиц на крупномасштабных черенковских детекторах в естественных прозрачных средах была впервые высказана в начале 1960-х годов советским ученым М.А. Марковым. А в конце 1970-х советский академик А.Е. Чудаков предложил использовать для детектирования нейтрино озеро Байкал. Озеро оптимально подходит для этого по нескольким причинам. Во-первых, из-за его глубины, которая превышает 1 км; во-вторых, из-за прозрачности чистейшей воды, составляющей примерно 22 м; в-третьих, из-за того, что на большой глубине в течение всего года температура остается постоянной — 3,4°С; и самое главное, зимой озеро покрывается толстым слоем льда, с которого очень удобно опускать под воду научную аппаратуру.

image
Монтаж гирлянды оптических модулей

Первая версия телескопа НТ200 была построена в 90-х годах. Первое нейтрино поймали в 1994-м. Вдохновлённые успехом, учёные в 2000-м году приступили к строительству следующей версии телескопа НТ1000.

Кластер «Дубна» уже содержит 192 оптических модуля, погруженных на глубины до 1300 метров и стал одним из трёх наиболее крупных детекторов нейтрино в мире. К 2020 году планируется закончить создание детектора. Он будет состоять из 10 — 12 кластеров с эффективным объёмом 1 км3. Такой же объём льда используется в качестве черенковского радиатора у крупнейшей на данный момент нейтринной обсерватории IceCube.

image
Проверка на работоспособность центрального модуля секции перед погружением гирлянды на глубину 1300 м

Коллаборация «Байкал» включает в себя сегодня: Институт ядерных исследований РАН (Москва), Объединенный институт ядерных исследований (г. Дубна), Иркутский государственный университет, Московский государственный университет им. М.В. Ломоносова, Нижегородский государственный технический университет, Санкт-Петербургский государственный морской технический университет, компанию Evologic ( Германия), Институт ядерной физики (Ржеж) и Институт экспериментальной и прикладной физики (Пражский Университет, Чехия), Братиславский университет (Словакия).

image
Заключительный ритуал. Каждый должен подержаться за последнюю веревочку, связывающую установленный кластер с поверхностью льда и подумать: все ли сделано для бесперебойной работы кластера

«Природный поток нейтрино несет в себе богатейшую, и во многих отношениях уникальную, информацию об окружающем нас мире. Исследование этого потока в различных энергетических диапазонах способно дать ключ к пониманию ранних стадий эволюции Вселенной, процессов формирования химических элементов, механизма эволюции массивных звезд и взрывов Сверхновых, пролить свет на проблему темной (невидимой) материи, на состав и внутреннее строение Солнца сегодня и в достаточно удаленном прошлом, и даже продвинуться в понимании проблемы внутреннего строения одного из наиболее трудных для изучения объектов – планеты Земля.» – так поясняет необходимость создания комплекса академик В.А. Рубаков, руководитель секции ядерной физики Отделения физических наук РАН.

Автор: SLY_G

Источник


* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js