- PVSM.RU - https://www.pvsm.ru -

Знакомство с Apache Spark

Здравствуйте, уважаемые читатели!

Мы наконец-то приступаем к переводу серьезной книги о фреймворке Spark:

Знакомство с Apache Spark - 1

Сегодня мы предлагаем вашему вниманию перевод обзорной статьи о возможностях Spark, которую, полагаем, можно с полным правом назвать слегка потрясающей.

Я впервые услышал о Spark в конце 2013 года, когда заинтересовался Scala – именно на этом языке написан Spark. Несколько позже я принялся ради интереса разрабатывать проект из области Data Science, посвященный прогнозированию выживаемости пассажиров «Титаника» [1]. Оказалось, это отличный способ познакомиться с программированием на Spark и его концепциями. Настоятельно рекомендую познакомиться с ним всем начинающим Spark-разработчикам [2].

Сегодня Spark применяется во многих крупнейших компаниях, таких, как Amazon, eBay и Yahoo! Многие организации эксплуатируют Spark в кластерах, включающих тысячи узлов. Согласно FAQ по Spark, в крупнейшем из таких кластеров насчитывается более 8000 узлов. Действительно, Spark – такая технология, которую стоит взять на заметку и изучить.

Знакомство с Apache Spark - 2

В этой статье предлагается знакомство со Spark, приводятся примеры использования и образцы кода.

Что такое Apache Spark? Введение

Spark [3] – это проект Apache, который позиционируется как инструмент для «молниеносных кластерных вычислений». Проект разрабатывается процветающим свободным сообществом, в настоящий момент является наиболее активным из проектов Apache.

Spark предоставляет быструю и универсальную платформу для обработки данных. По сравнению с Hadoop Spark ускоряет работу программ в памяти более чем в 100 раз, а на диске – более чем в 10 раз.

Кроме того, код на Spark пишется быстрее, поскольку здесь в вашем распоряжении будет более 80 высокоуровневых операторов. Чтобы оценить это, давайте рассмотрим аналог “Hello World!” из мира BigData: пример с подсчетом слов (Word Count). Программа, написанная на Java для MapReduce, содержала бы около 50 строк кода, а на Spark (Scala) нам потребуется всего лишь:

sparkContext.textFile("hdfs://...")
            .flatMap(line => line.split(" "))
            .map(word => (word, 1)).reduceByKey(_ + _)
            .saveAsTextFile("hdfs://...")

При изучении Apache Spark стоит отметить еще один немаловажный аспект: здесь предоставляется готовая интерактивная оболочка (REPL). При помощи REPL можно протестировать результат выполнения каждой строки кода без необходимости сначала программировать и выполнять все задание целиком. Поэтому написать готовый код удается гораздо быстрее, кроме того, обеспечивается ситуативный анализ данных.

Кроме того, Spark имеет следующие ключевые черты:

  • В настоящее время предоставляет API для Scala, Java и Python, также готовится поддержка других языков (например, R)
  • Хорошо интегрируется с экосистемой Hadoop и источниками данных (HDFS, Amazon S3, Hive, HBase, Cassandra, etc.)
  • Может работать на кластерах под управлением Hadoop YARN или Apache Mesos, а также работать в автономном режиме

Ядро Spark дополняется набором мощных высокоуровневых библиотек, которые бесшовно стыкуются с ним в рамках того же приложения. В настоящее время к таким библиотекам относятся SparkSQL, Spark Streaming, MLlib (для машинного обучения) и GraphX – все они будут подробно рассмотрены в этой статье. Сейчас также разрабатываются другие библиотеки и расширения Spark.

Знакомство с Apache Spark - 3

Ядро Spark
Ядро Spark [4] – это базовый движок для крупномасштабной параллельной и распределенной обработки данных. Ядро отвечает за:

  • управление памятью и восстановление после отказов
  • планирование, распределение и отслеживание заданий кластере
  • взаимодействие с системами хранения данных

В Spark вводится концепция RDD [5] (устойчивый распределенный набор данных) – неизменяемая отказоустойчивая распределенная коллекция объектов, которые можно обрабатывать параллельно. В RDD могут содержаться объекты любых типов; RDD создается путем загрузки внешнего набора данных или распределения коллекции из основной программы (driver program). В RDD поддерживаются операции двух типов:

  • Трансформации [6] – это операции (например, отображение, фильтрация, объединение и т.д.), совершаемые над RDD; результатом трансформации становится новый RDD, содержащий ее результат.
  • Действия [7] – это операции (например, редукция, подсчет и т.д.), возвращающие значение, получаемое в результате некоторых вычислений в RDD.

Трансформации в Spark осуществляются в «ленивом» режиме — то есть, результат не вычисляется сразу после трансформации. Вместо этого они просто «запоминают» операцию, которую следует произвести, и набор данных (напр., файл), над которым нужно совершить операцию. Вычисление трансформаций происходит только тогда, когда вызывается действие, и его результат возвращается основной программе. Благодаря такому дизайну повышается эффективность Spark. Например, если большой файл был преобразован различными способами и передан первому действию, то Spark обработает и вернет результат лишь для первой строки, а не станет прорабатывать таким образом весь файл.

По умолчанию каждый трансформированный RDD может перевычисляться всякий раз, когда вы выполняете над ним новое действие. Однако RDD также можно долговременно хранить в памяти, используя для этого метод хранения или кэширования; в таком случае Spark будет держать нужные элементы на кластере, и вы сможете запрашивать их гораздо быстрее.

SparkSQL

SparkSQL [8] – это компонент Spark, поддерживающий запрашивание данных либо при помощи SQL, либо посредством Hive Query Language [9]. Библиотека возникла как порт Apache Hive для работы поверх Spark (вместо MapReduce), а сейчас уже интегрирована со стеком Spark. Она не только обеспечивает поддержку различных источников данных, но и позволяет переплетать SQL-запросы с трансформациями кода; получается очень мощный инструмент. Ниже приведен пример Hive-совместимого запроса:


// sc – это существующий SparkContext.
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sqlContext.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

// Запросы формулируются на HiveQL
sqlContext.sql("FROM src SELECT key, value").collect().foreach(println)

Spark Streaming

Spark Streaming [10] поддерживает обработку потоковых данных в реальном времени; такими данными могут быть файлы логов рабочего веб-сервера (напр. Apache Flume и HDFS/S3), информация из соцсетей, например, Twitter, а также различные очереди сообщений вроде Kafka. «Под капотом» Spark Streaming получает входные потоки данных и разбивает данные на пакеты. Далее они обрабатываются движком Spark, после чего генерируется конечный поток данных (также в пакетной форме) как показано ниже.

Знакомство с Apache Spark - 4

API Spark Streaming точно соответствует API Spark Core, поэтому программисты без труда могут одновременно работать и с пакетными, и с потоковыми данными.

MLlib

MLlib [11] – это библиотека для машинного обучения, предоставляющая различные алгоритмы, разработанные для горизонтального масштабирования на кластере в целях классификации, регрессии, кластеризации, совместной фильтрации и т.д. Некоторые из этих алгоритмов работают и с потоковыми данными — например, линейная регрессия с использованием обычного метода наименьших квадратов или кластеризация по методу k-средних (список вскоре расширится). Apache Mahout [12] (библиотека машинного обучения для Hadoop) уже ушла от MapReduce, теперь ее разработка ведется совместно с Spark MLlib.

GraphX

GraphX – это библиотека для манипуляций над графами и выполнения с ними параллельных операций. Библиотека предоставляет универсальный инструмент для ETL, исследовательского анализа и итерационных вычислений на основе графов. Кроме встроенных операций для манипуляций над графами здесь также предоставляется библиотека обычных алгоритмов для работы с графами, например, PageRank.

Как использовать Apache Spark: пример с обнаружением событий

Теперь, когда мы разобрались, что такое Apache Spark, давайте подумаем, какие задачи и проблемы будут решаться с его помощью наиболее эффективно.

Недавно мне попалась статья [13] об эксперименте по регистрации землетрясений путем анализа потока Twitter. Кстати, в статье было продемонстрировано, что этот метод позволяет узнать о землетрясении более оперативно, чем по сводкам Японского Метеорологического Агентства. Хотя технология, описанная в статье, и не похожа на Spark, этот пример кажется мне интересным именно в контексте Spark: он показывает, как можно работать с упрощенными фрагментами кода и без кода-клея.

Во-первых, потребуется отфильтровать те твиты, которые кажутся нам релевантными – например, с упоминанием «землетрясения» или «толчков». Это можно легко сделать при помощи Spark Streaming, вот так:


TwitterUtils.createStream(...)
            .filter(_.getText.contains("earthquake") || _.getText.contains("shaking"))

Затем нам потребуется произвести определенный семантический анализ твитов, чтобы определить, актуальны ли те толчки, о которых в них говорится. Вероятно, такие твиты, как «Землетрясение!» или «Сейчас трясет» будут считаться положительными результатами, а «Я на сейсмологической конференции» или «Вчера ужасно трясло» — отрицательными. Авторы статьи использовали для этой цели метод опорных векторов (SVM). Мы поступим также, только реализуем еще и потоковую версию [14]. Полученный в результате образец кода из MLlib выглядел бы примерно так:

// Готовим данные о твитах, касающихся землетрясения, и загружаем их в формате LIBSVM
val data = MLUtils.loadLibSVMFile(sc, "sample_earthquate_tweets.txt")

// Разбиваем данные на тренировочные (60%) и тестовые (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)

// Запускаем тренировочный алгоритм, чтобы построить модель
val numIterations = 100
val model = SVMWithSGD.train(training, numIterations)

// Очищаем пороговое значение, заданное по умолчанию
model.clearThreshold()

// Вычисляем приблизительные показатели по тестовому множеству 
val scoreAndLabels = test.map { point =>
  val score = model.predict(point.features)
  (score, point.label)
}

// Получаем параметры вычислений
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()

println("Area under ROC = " + auROC)

Если процент верных прогнозов в данной модели нас устраивает, мы можем переходить к следующему этапу: реагировать на обнаруженное землетрясение. Для этого нам потребуется определенное число (плотность) положительных твитов, полученных в определенный промежуток времени (как показано в статье). Обратите внимание: если твиты сопровождаются геолокационной информацией, то мы сможем определить и координаты землетрясения. Вооружившись этими знаниями, мы можем воспользоваться SparkSQL и запросить имеющуюся таблицу Hive (где хранятся данные о пользователях, желающих получать уведомления о землетрясениях), извлечь их электронные адреса и разослать им персонализированные предупреждения, вот так:

// sc – это имеющийся SparkContext.
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
// sendEmail – это пользовательскаяфункция
sqlContext.sql("FROM earthquake_warning_users SELECT firstName, lastName, city, email")
          .collect().foreach(sendEmail)

Другие варианты использования Apache Spark

Потенциально сфера применения Spark, разумеется, далеко не ограничивается сейсмологией.
Вот ориентировочная (то есть, ни в коем случае не исчерпывающая) подборка других практических ситуаций, где требуется скоростная, разноплановая и объемная обработка больших данных, для которой столь хорошо подходит Spark:

В игровой индустрии: обработка и обнаружение закономерностей, описывающих игровые события, поступающие сплошным потоком в реальном времени; в результате мы можем немедленно на них реагировать и делать на этом хорошие деньги, применяя удержание игроков, целевую рекламу, автокоррекцию уровня сложности и т.д.

В электронной коммерции информация о транзакциях, поступающая в реальном времени, может передаваться в потоковый алгоритм кластеризации, например, по k-средним [15] или подвергаться совместной фильтрации, как в случае ALS [16]. Затем результаты даже можно комбинировать с информацией из других неструктутрированных источников данных — например, с отзывами покупателей или рецензиями. Постепенно эту информацию можно применять для совершенствования рекомендаций с учетом новых тенденций.

В финансовой сфере или при обеспечении безопасности стек Spark может применяться для обнаружения мошенничества или вторжений, либо для аутентификации с учетом анализа рисков. Таким образом можно получать первоклассные результаты, собирая огромные объемы архивированных логов, комбинируя их с внешними источниками данных, например, с информацией об утечках данных или о взломанных аккаунтах (см., например, https://haveibeenpwned.com/ [17]), а также использовать информацию о соединениях/запросах, ориентируясь, например, на геолокацию по IP или на данные о времени

Заключение

Итак, Spark помогает упростить нетривиальные задачи, связанные с большой вычислительной нагрузкой, обработкой больших объемов данных (как в реальном времени, так и архивированных), как структурированных, так и неструктурированных. Spark обеспечивает бесшовную интеграцию сложных возможностей – например, машинного обучения и алгоритмов для работы с графами. Spark несет обработку Big Data в массы. Попробуйте – не пожалеете!

Автор: Издательский дом «Питер»

Источник [18]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/programmirovanie/111485

Ссылки в тексте:

[1] прогнозированию выживаемости пассажиров «Титаника»: https://www.kaggle.com/c/titanic

[2] начинающим Spark-разработчикам: http://www.toptal.com/spark

[3] Spark: https://spark.apache.org/

[4] Ядро Spark: http://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10/1.0.0

[5] RDD: http://spark.apache.org/docs/1.2.1/programming-guide.html#resilient-distributed-datasets-rdds

[6] Трансформации: http://spark.apache.org/docs/1.2.1/programming-guide.html#transformations

[7] Действия: http://spark.apache.org/docs/1.2.1/programming-guide.html#actions

[8] SparkSQL: https://spark.apache.org/sql/

[9] Hive Query Language: https://cwiki.apache.org/confluence/display/Hive/LanguageManual

[10] Spark Streaming: https://spark.apache.org/streaming/

[11] MLlib: https://spark.apache.org/mllib/

[12] Apache Mahout: http://mahout.apache.org/

[13] статья: http://www.ymatsuo.com/papers/www2010.pdf

[14] потоковую версию: http://spark.apache.org/docs/1.2.1/mllib-linear-methods.html#streaming-linear-regression

[15] k-средним: https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html

[16] ALS: https://databricks.com/blog/2014/07/23/scalable-collaborative-filtering-with-spark-mllib.html

[17] https://haveibeenpwned.com/: https://haveibeenpwned.com/

[18] Источник: https://habrahabr.ru/post/276675/