Зачем программисту знать алгоритмы

в 14:50, , рубрики: Алгоритмы, Программирование, размышления вслух

Часто появляются статьи вида «нужны ли программисту алгоритмы», и все они имеют примерно одинаковый шаблон. Автор статьи как правило пишет: «Я N лет пишу сайты/скрипты в 1С, и никогда не пользовался алгоритмами или структурами данных. Тут же приводятся в пример красно-чёрные деревья или какие-нибудь другие экзотические структуры, которые в области, в которой работает автор не часто увидишь, если увидишь вообще. Такие статьи сводятся к тому, что в конкретной области программисты не используют сложные структуры данных и не решают NP задач.

Сама постановка такого вопроса в корне не верна. Количество специальностей в индустрии растёт постоянно, и человек, который пишет сайты на .net будет заниматься совсем другими вещами, нежели человек, пишущий драйвера для сенсоров на ARM архитектуре под экзотической ОС. Давайте прежде всего определим, что же такое алгоритм. Неформально Кормен определяет алгоритм алгоритм как строго определённую процедуру, которая принимает одно или несколько значений как ввод, и возвращает одно или несколько значений как результат. Формально алгоритм определяется в разных моделях вычислений: операции, которые можно выполнить на машине Тьюринга или с помощью лямбда-исчислений. Таким образом фактически любой код, который что-то делает, является алгоритмом. Получается, что вопрос «нужны ли программисту алгоритмы» можно перевести как «нужно ли программисту уметь писать код». Правильно такой вопрос должен звучать что-то вроде: «нужно ли программисту в отрасли Х знать продвинутые алгоритмы и детали теории вычислений».

Если посмотреть на все эти статьи, то можно заметить, что люди, которые их пишут, фактически обижены на университеты за то, что их заставили учить много сложного материала — в виде алгоритмического анализа, сложных алгоритмов и структур данных — который им вроде бы не пригодился. По сути, авторы статей обижены на университеты из-за того, что там не смогли предсказать будущую область работы авторов и дать им только минимально нужный набор навыков. Ведь действительно, чтобы писать простенькие сайты и скрипты, не нужно особого знания алгоритмов и структур данных. Или всё-таки нужно?

Давайте подумаем, что же нужно учить программисту в университете, для того чтобы приобрести необходимые навыки для успешной карьеры. Библиотеки? Фреймворки? Они устаревают, интерфейсы к ним меняются, все они написаны чаще всего под один язык, который студенты могут и не использовать никогда в индустрии. Всех учить писать сайты? Или всех учить писать ОС? Образование должно охватывать как можно большую аудиторию и давать максимально возможный набор навыков. Программист в первую очередь должен уметь анализировать и решать проблемы – это основной навык, которым должны обзавестись выпускники факультетов информатики. Написание кода – это просто необходимый инструмент, который используется для решения задач. Кто может знать какие навыки вам понадобятся в будущем? Таким образом учить теорию – это наиболее оптимально с точки зрения образования. Полученные навыки можно применить в любой области, а выучить библиотеку или фреймворк имея хорошую базу знаний не составит большого труда. Парадоксально то, что люди задающие вопросы про нужность алгоритмов, как правило имеют какие-то знания в этой области. Я не помню ни одного человека, который не имел знаний в области теории вычислений, и с гордостью кричал об этом, утверждая, что ему они не нужны.

Итак, вы абстрактный программист в вакууме, работаете десять с лишним лет клепая сайты и решая простые однотипные задачи клиентов/компании. Вам хорошо и уютно в вашей нише, и только мучительно больно за бесцельно потраченное время в классе по теории вычислений и алгоритмическому анализу, который вам ничего не дал. По утрам закуривая сигарету за чашкой кофе, в глубине философских размышлений о бренности бытия вы задумываетесь: зачем же программистам, не решающим сложных задач, знать алгоритмы и основы анализа. Короткий ответ: чтобы быть квалифицированным специалистом и эффективно использовать доступные инструменты, включая язык, на котором вы пишите. Теория алгоритмов и анализа учит не только экзотические алгоритмы и структуры данных в виде АВЛ и красно-чёрных деревьев. Она также даёт представления о том, как эффективно организовать данные, как писать код с максимальной производительностью, где в системе возможно бутылочное горлышко и как с ним бороться. Вас ознакамливают с готовыми решениями, чтобы вы не писали велосипедов, и не бежали в гугл каждый раз, когда нужно сделать что-то нетривиальное.

Знания теории анализа и алгоритмов применяются всеми программистами на самом деле каждый день, просто мы привыкли к этим вещам настолько, что даже не задумываемся над этим. Какую бы задачу вы не решали – будь то простой сайт с выборкой данных из БД, или баш скрипт на сервере, вы будете использовать какие-то структуры данных. Как минимум примитивный массив, а скорее всего и что-то посложнее. Языки дают нам множество различных структур, многие из которых взаимозаменяемы. Часто мы имеем несколько вариаций одного абстрактного типа с разными реализациями. Например, в С++ есть структуры данных vector и list. Чем они отличаются, и какие будут преимущества и недостатки использования одного или другого? Как в С++ реализована map, и чем она отличается от multimap? Как реализован list в Python – через массив или связным списком и как лучше всего с ним работать? Почему в C# нежелательно использовать ArrayList, а вместо него использовать List? Как реализован SortedDictionary и как он повлияет на исполнение программы если будет использован вместо Dictionary? Как работает continuation, когда её нужно использовать, и будут ли какие-то побочные эффекты при её использовании? Когда вы в последний раз использовали каррированные функции, которые есть почти в каждом языке? Если вы думаете, что map в С++ реализована как хэш-таблица, вы ошибаетесь. Она реализована на красно-чёрных деревьях, а хэш-таблицей реализована unordered_map. Отдельно стоит упомянуть динамическое программирование. Понимание что это такое, как можно оптимально переписать рекурсивные функции и что такое мемоизация, часто поможет избежать выстрела себе в ногу. Таким образом просто чтобы полноценно и эффективно использовать язык, на котором вы пишите, уже нужно иметь хотя бы поверхностные знания о структурах данных, что они из себя представляют, и как могут повлиять на исполнение вашей программы.

А как же библиотеки? Ведь они решают столько задач! Чтобы рационально использовать библиотеки, их тоже нужно понимать. Во-первых, функции в библиотеки могут иметь побочные эффекты или поведение, которые вы не будете знать без понимания алгоритмов. Получив баг в таком случае можно долго и упорно пытаться его поймать и решить, когда можно было избежать. Во-вторых, различные инструменты и библиотеки часто нужно «настраивать» — говорить им какие алгоритмы, структуры данных и технологии использовать внутри. Без элементарных знаний вам придётся либо идти читать маны, либо выбирать наугад. В-третьих – есть множество задач, которые нельзя решить простым вызовом API библиотеки или фреймворка. Что вы будете делать в таком случае? Тратить часы на поиски возможных решений и просить помощи у друга? В-четвёртых – множество задач решается очень просто несколькими строчками кода или встроенными средствами языка. Если для решения каждого чиха вы будете тянуть библиотеку, то ваши программы будут гигантскими монстрами, занимая по сотни мегабайт и больше на диске, отжирая всю память на сервере, и при том имея довольно скудный функционал. Кроме того, наличие кучи подключенных библиотек влечёт за собой проблемы совместимости, и программа может падать случайным образом из-за странного поведения нескольких библиотек в одном проекте. Бездумное использование библиотек может привести к довольно плачевным последствиям, и разработчики, которые умеют только использовать библиотеки, но не способны решить даже простую проблему самостоятельно, никогда не будут ценится, потому что их решения будут неконкурентоспособны.

Со мной работал один программист со стажем больше десяти лет. Однажды нам понадобилась функция, которую использованная нами библиотека на тот момент не поддерживала: примитивный text-wrap в одном из визуальных компонентов. Этот «программист» посмотрел, что стандартными средствами это сделать нельзя, и сразу заявил, что реализация такой функции невозможна. Задачу решил интерн-третьекурсник с аналитическим мозгом, который за два часа написал простой алгоритм и внедрил его в нужный компонент. Другой проект в виде сайта на .net мне достался по наследству. Главная страничка представляла собой несколько маленьких графиков, и загружалась почти 10 секунд. Оказалось, что человек, который изначально делал этот проект, нагородил кучу ужасных конструкций из тройных вложенных циклов, которые долго и печально забирали данные из БД, и потом привязывали их к графикам. После небольшого рефакторинга страница стала грузится почти мгновенно.

Может ли программист обойтись без знаний алгоритмов и теории анализа? Может, и таких «программистов» очень много. Только назвать их программистами можно разве что с большой натяжкой. Ко мне на собеседование приходит очень много программистов, со стажем десять-пятнадцать лет, и толком не понимающих что же они делают и почему. У них своя ниша, они ходят от компании к компании, не задерживаясь в них больше года. Как правило, у них есть небольшой набор задач, которые они могут решать, и если сделать шаг в сторону, то человек теряется и ему нужно обучить себя новым навыкам. Таких людей приглашают на проект, и от них избавляются как можно быстрее, потому что они теряют кучу времени, изобретая велосипеды и читая маны чтобы узнать то, что уже должны были знать из университета. У них как правило нет особо никакой карьеры и нестабильный заработок.

В итоге, для чего нужно знать алгоритмы и теорию анализа, если можно выполнять работу и без этих знаний? Чтобы быть квалифицированным специалистом в своей профессии, иметь карьерный рост и уважение коллег. Чтобы эффективно решать поставленные задачи и не изобретать велосипедов. Чтобы не писать монстров с огромным количеством сторонних библиотек, которые занимают сотни мегабайт на диске от отжирают кучу памяти на сервере и регулярно падают по случайной причине в зависимости от фазы луны. Чтобы эффективно и с максимальными возможностями использовать язык, на которым вы пишете. Чтобы принимать информированные и осмысленные решения по выбору библиотеки и технологии для решения проблемы. Если же ваша работа заключается в написание SQL запроса и вбивание команды в консоль, то хочу вас огорчить: вы не программист, вы – пользователь, вам действительно не нужны алгоритмы и иже с ним, и вы зря потратили время в университете потому что для такой работы достаточно закончить курсы или прочитать пару вводных книжек самостоятельно.

Автор: sgrey

Источник

Поделиться новостью

* - обязательные к заполнению поля