Почему не нужно сваливать на неточность O-оценок свои проблемы

в 1:10, , рубрики: big o, cpu, ram, Алгоритмы, математика, о большое, ОЗУ, память, Программирование, процессор

А ты учел константу в О-большом?
На написание данного поста меня подвигла недавняя публикация этого и вот этого переводов, в которых авторы в интеллигентной форме выражают свое недовольство по поводу того, как O-оценки вычислительной сложности классических, казалось бы, алгоритмов вступили в диссонанс с их практическим опытом разработки. Основным предметом критики послужила модель памяти, в рамках которой эти оценки были получены — она, де, не учитывает особенности иерархической организации по принципу быстродействия, которая имеет место быть в современных вычислительных системах. От чего и произрастают все последующие неприятности. И судя по наблюдаемой реакции благодарных читателей, авторы далеко не одиноки в своем негодовании и желании «наехать» на классиков с их О-большими. Так возможно, действительно стоит отправить на свалку истории выкладки дядек в белых халатах, сделанные ими для ламповых тугодумающих и пышащих жаром машин, и дать дорогу молодым амбициозным моделям, более точно отражающим анатомию современного «железа»?

Давайте разбираться

По ходу текста я буду ссылаться на вторую публикацию и некоторые комментарии к ней. Тронуло за живое. Но для начала давайте точно условимся что под чем понимается по ходу данного текста.

Введем определение. Пусть Почему не нужно сваливать на неточность O-оценок свои проблемы - 2 и Почему не нужно сваливать на неточность O-оценок свои проблемы - 3 — две вещественные функции, определенные на множестве Почему не нужно сваливать на неточность O-оценок свои проблемы - 4. Тогда из Почему не нужно сваливать на неточность O-оценок свои проблемы - 5 следует, что найдется такое положительное число Почему не нужно сваливать на неточность O-оценок свои проблемы - 6, что для всех Почему не нужно сваливать на неточность O-оценок свои проблемы - 7 справедливо Почему не нужно сваливать на неточность O-оценок свои проблемы - 8. Такое обозначение называют Почему не нужно сваливать на неточность O-оценок свои проблемы - 9-нотацией, а O называют символом Бахмана, либо просто "О-большим".

Из этого определения сразу имеется несколько следствий:

1. Если для всех Почему не нужно сваливать на неточность O-оценок свои проблемы - 10 имеет место Почему не нужно сваливать на неточность O-оценок свои проблемы - 11, то из Почему не нужно сваливать на неточность O-оценок свои проблемы - 12" следует, что Почему не нужно сваливать на неточность O-оценок свои проблемы - 13. В частности, имеем, что умножение на константу не меняет O-оценку.

Проще говоря, при умножении O-выражения на константу символ Бахмана эту константу «съедает». Это означает, что знак равенства в выражении, включающем в себя O-оценку, нельзя интерпретировать как классическое «равенство» значений и к таким выражениям нельзя применять математические операции без дополнительных уточнений. В противном случае мы бы получили странные вещи по типу следующей: Почему не нужно сваливать на неточность O-оценок свои проблемы - 14. Это следствие произвольности константы, которая «прячется» за символом Бахмана.

2. Если Почему не нужно сваливать на неточность O-оценок свои проблемы - 15 ограничена на Почему не нужно сваливать на неточность O-оценок свои проблемы - 16, то есть существует такое число Почему не нужно сваливать на неточность O-оценок свои проблемы - 17, что для всех Почему не нужно сваливать на неточность O-оценок свои проблемы - 18 выполняется Почему не нужно сваливать на неточность O-оценок свои проблемы - 19, то Почему не нужно сваливать на неточность O-оценок свои проблемы - 20.

Переводя с математического на русский и взяв для простоты в качестве Почему не нужно сваливать на неточность O-оценок свои проблемы - 21 конечный интервал числовой прямой, имеем следующее: если функция на заданном интервале не уходит в бесконечность, то самое бессмысленное, что можно о ней еще сказать — это то, что ей соответствует O(1). Это совершенно ничего нового не говорит о ее поведении.

Угадай мою сложность
Голубая линия это O(√N).

Вернемся к случаю оценки сложности алгоритма и посмотрим на картинку, приводимую автором цитируемой публикации. Наблюдая рост времени выполнения, делается вывод о несостоятельности оценки O(1). Но интервал, на котором анализируется поведение программы, конечен. Значит по факту утверждается, что оценка O(1) на нем плоха.

Чтож… спасибо, Кэп.

Более того, дальше делается попытка угадать! мажорирующую функцию просто по виду кривой, дескать, «гля как похоже». Не проводя никакого анализа самого алгоритма с учетом тех особенностей, на которых пытаются акцентировать внимание и не вводя никакой модели памяти! А почему, собственно, там корень квадратный, а не кубический? Или не логарифм какой-нибудь залетный? Ну, право слово, предложили бы хоть пару-тройку вариантов, зачем же сразу «внимание, правильный ответ»?

Здесь стоит оговориться. Я, естественно, не веду к неверности выводов о том, что при переходе к «более далекому» от процессора накопителю время доступа падает. Но время получения порции данных при произвольном доступе к памяти даже на самом медленном уровне иерархии есть величина постоянная или хотя бы ограниченная. Из чего и следует оценка O(1). А если она не ограниченная и зависит от размерности данных — значит доступ к памяти не произвольный. Ну тупо по определению. Давайте не забывать, что мы имеет дело с идеализированными алгоритмическими конструкциями. Поэтому когда говорится, что «дальше за HDD пойдут датацентры»… Господа, ну какой же это произвольный доступ, какие массивы и хэш-таблицы? Это называется мухлёж под столом: вы втихаря меняете условия задачи, приводите ответ к предыдущей и кричите: «Ахтунг! Неправильно-то как!». У меня это вызывает приступ тяжелого недоумения. Ведь если за словом array, vector или <какой-то-тип>* ваш компилятор скрывает, скажем, кусок распределенной по узлам кластера памяти — то это по структуре может быть что угодно, но не массив в терминах книг Вирта и Кнута, и применять к ним написанные в этих книгах результаты формального анализа в высшей степени бестолковая идея. И не меньшая шизофрения — на полном серьезе говорить об общности оценки, придуманной глядя на график с результатами произвольного теста.

Ошибочность приводимого суждения заключается в том, что O-оценка сложности делается на основании эксперимента. Чтобы это подчеркнуть, введем еще одно «свойство» O-нотации, применимое к оценкам алгоритмической сложности:

3. O-оценка может быть получена только из анализа структуры алгоритма, но не из результатов эксперимента. По результатам эксперимента можно получить статистические оценки, экспертные оценки, прикидочные оценки и, наконец, инженерное и эстетическое удовольствие — но не асимптотические оценки.

Последнее является следствием того, что сам смысл подобных оценок — это получить представление о поведении алгоритма при достаточно больших размерностях данных, причем насколько больших обычно не уточняется. Это не единственная и далеко не всегда главная, но представляющая интерес характеристика алгоритма. Во времена Дейкстры и Хоара достаточно большими можно было считать порядки размерности 3-6, в наше время 10-100 (по моим не претендующим на глубину анализа оценкам). Иными словами, ставя вопрос о получении асимптотических оценок функции сложности алгоритма, удобно модифицировать определение O-нотации таким образом:

Пусть Почему не нужно сваливать на неточность O-оценок свои проблемы - 23. Тогда Почему не нужно сваливать на неточность O-оценок свои проблемы - 24 означает, что существуют взаимно независимые положительные числа A и n, такие что для всех Почему не нужно сваливать на неточность O-оценок свои проблемы - 25 выполняется Почему не нужно сваливать на неточность O-оценок свои проблемы - 26.

То есть при анализе алгоритмической сложности мы фактически рассматриваем мажоранты функции сложности на всех ограниченных слева и не ограниченных справа интервалах. Значит таких О-оценок может быть указано сколь угодно много и все такие оценки могут оказаться практически полезными. Некоторые из них будут точными для малых N, но быстро уходить в бесконечность. Другие будут расти медленно, но станут справедливы начиная с такого N, до которого нам на наших убогих компьютерах как пешком до Луны. Так что если допустить, что за оценкой времени доступа к памяти Почему не нужно сваливать на неточность O-оценок свои проблемы - 27 скрыт какой-либо структурный анализ, то эту оценку вполне можно было бы использовать в определенном диапазоне размерностей, но даже тогда она бы не отменила верность оценки O(1).

Классический пример некорректного сравнения асимптотических оценок — алгоритмы умножения квадратных матриц. Если делать выбор между алгоритмами только на основании сравнения оценок, то берем алгоритм Уильямс и не паримся. Можно лишь пожелать творческих успехов решившему применить его к матрицам характерных для инженерных задач размерностей. Но с другой стороны, мы знаем, что начиная с некоторой размерности задачи алгоритм Штрассена и различные его модификации будут работать быстрее тривиального, и это дает нам пространство для маневра при выборе подходов к решению задачи.

Как из умности получаются глупости.

Грешить на неточность O-оценок — значит полностью не понимать смысл этих оценок, и если это так — то никто не заставляет их использовать. Вполне можно и зачастую оправдано предпочитать им статистические оценки, полученные в результате тестов на специфических именно для вашей области наборах данных. Неграмотное использование такого тонкого инструмента, как асимптотический анализ, приводит к перегибам и вообще удивительным штукам. Например, используя O-нотацию, можно ""«доказать»"" несостоятельность идеи параллельного программирования.

Допустим, что наш алгоритм, которому скармливается порция данных размерности N и который при последовательном выполнении имеет сложность Почему не нужно сваливать на неточность O-оценок свои проблемы - 28, легко и непринужденно разбивается на те же N независимых и для простоты одинаковых по вычислительной и временной сложности частей. Получаем, что сложность каждой такой части есть Почему не нужно сваливать на неточность O-оценок свои проблемы - 29. Пусть у нас есть M независимых вычислителей. Тогда общая сложность выполнения параллельного алгоритма есть ничто иное как Почему не нужно сваливать на неточность O-оценок свои проблемы - 30. Получилось, что асимптотическая оценка сложности алгоритма в результате даже идеальной параллелизации на конечное число процессов не меняется. Но внимательный читатель заметил, что изменилась «спрятанная» константа, которую схомячил символ Бахмана. То есть делать из подобного анализа какие-то общие выводы относительно самой идеи параллелизации по меньшей мере глупо. Но возможна и другая крайность — забыть, что количество процессоров конечно и на основании бесконечного ресурса параллелизма утверждать, что оценка «параллельной версии алгоритма» есть O(1).

Подведем итоги.

В качестве вывода можно предоставить следующие подкупающие новизной утверждения:

  • Нельзя утверждать, что один алгоритм эффективнее другого на основании простого сопоставления их O-оценок. Такое утверждение всегда требует пояснений.
  • Нельзя из результатов замеров производительности делать вывод о правильности или неправильности таких оценок — спрятанная константа обычно неизвестна и может быть достаточно большой.
  • Можно (а иногда нужно) рассуждать об алгоритмах и структурах данных вообще не используя такие оценки. Для этого достаточно просто сказать, какие конкретно их свойства вас интересуют.
  • Но лучше все-таки принимать конкретные инженерные решения, учитывая в том числе и такие характеристики употребляемых алгоритмов.

За утверждением о неточности, неправильности или непрактичности асимптотических оценок часто скрыто нежелание провести нормальный предварительный анализ поставленной проблемы и попытка опираться на название, но не суть тех абстракций, с которыми имеют дело. Говоря об асимптотической сложности алгоритма, грамотный специалист понимает, что речь идет об идеализированных конструкциях, держит в уме степень корректности проецирования их на реальное «железо» и никогда, от слова «вообще», не принимает инженерных решений опираясь только и исключительно на нее. O-оценки более полезны при разработке новых алгоритмов и поиске принципиальных решений сложных задач и намного менее полезны при написании и отладке конкретных программ под конкретное железо. Но если вы их неправильно интерпретировали и получили совсем не то, что обещало вам ваше понимание прочитанного в умных книжках — согласитесь, это не проблема тех, кто эти оценки доказательно получил.

Автор: alexkolzov

Источник

Поделиться новостью

* - обязательные к заполнению поля