Рубрика «математика» - 178

Пусть p — нечётное простое число. Довольно широко известно, что p представимо в виде суммы двух квадратов целых чисел p=a2+b2 тогда и только тогда, когда p при делении на 4 даёт остаток 1: 5=12+22, 13=32+22, 17=12+42, ...; 3, 7, 11,… непредставимы. Куда менее известно, что a и b можно записать красивой формулой, имеющей непосредственное отношение к одной эллиптической кривой. Об этом результате 1907 года за авторством немца по фамилии Jacobsthal и о связанных вещах мы сегодня и поговорим.

Совсем легко понять, почему 3, 7, 11 и прочие числа, дающие при делении на 4 остаток 3, непредставимы в виде a2+b2: квадрат чётного числа всегда делится на 4, квадрат нечётного числа всегда даёт остаток 1 при делении на 4, сумма двух квадратов при делении на 4 может давать остатки 0, 1 или 2, но никак не 3. Представимость простых чисел вида 4k+1 неочевидна (особенно если заметить, что простота существенна: число 21 хотя и имеет нужный остаток, но суммой двух квадратов не представляется).

Читать полностью »

Введение

Начну статью с того, что расскажу, как я познакомился с этой изящной конструкцией. Занимаясь олимпиадным программированием, мы с моим преподавателем решали много интересных задач. И вот однажды мне попалась следующая задача:

Распечатать в порядке возрастания все несократимые дроби, знаменатель которых не превосходит n, n<=100.

Прочитав условие задачи до конца, она не показалась мне сложной (она таковой и не является). Первое, что пришло мне в голову это просто перебрать все знаменатели от 2 до n и для каждого знаменателя перебрать числители от 1 до знаменателя, при условии, что числитель и знаменатель взаимно просты. Ну, а за тем отсортировать их по возрастанию.

Такое решение верно и задача прошла все назначенные ей тесты. Однако, мой преподаватель сказал, что задачу можно решить намного красивее (он уже сталкивался с этой конструкцией). Так я и познакомился с этой замечательной конструкцией — деревом Штерна-Броко.
Читать полностью »

В четвёртой серии цикла о графических вероятностных моделях (часть 1, часть 2, часть 3) мы продолжим разговор о том, как справляться со сложными фактор-графами. В прошлый раз мы изучили алгоритм передачи сообщений, который, правда, работает только в тех случаях, когда фактор-граф представляет собой дерево, и в каждом узле можно без проблем пересчитать распределения грубой силой. Что делать в по-настоящему интересных случаях, когда в графе есть большие содержательные циклы, мы начнём обсуждать сегодня – поговорим о паре относительно простых методов и обсудим очень мощный, но непростой в использовании инструмент – вариационные приближения.

Вероятностные модели: борьба с циклами и вариационные приближения
Читать полностью »

Привет! Недавно столкнулся с задачей подсчёта числа Пи до знака, номер которого будет выбирать пользователь. Сразу полез на Википедию, почитать, что за зверь такой, это Пи, и как его находить с заданной точностью. Формул, описывающих число Пи, уйма. Но для решения моей задачи всё в этих формулах упирается либо в точность и длину базовых типов языка (я выбрал Java), либо (для решения предыдущей проблемы) в длинную арифметику, которую мне реализовывать не очень-то хотелось. Читать полностью »

Введение

В данной статье пойдет речь о методе распознавания рукописного ввода путем математического анализа всех точек плоскости и перебора всех возможных комбинаций с целью отыскать наиболее лучшее наложение контрольных точек на ранее описанные фигуры. Поясню.
Рукописный ввод — это рисование мыслимым «пером» определенной фигуры. Рисование в компьютерных системах — это сохранение в графической памяти информации обо всех пикселях графического контекста. «Точка на плоскости» в математике — понятие абстрактное. В компьютерной же графике за этим понятием скрывается «пиксель». Данный алгоритм распознавания будет анализировать предоставленный ему набор точек( пикселей ) и пытаться в нем отыскать наиболее возможную и похожую фигуру. Фигура, в свою очередь, это каркас, содержащий лишь основные( контрольные ) точки, делающие фигуру уникальной.

Матчасть

Вообще говоря, сердце алгоритма — всем известная со времен школы Теорема Косинусов, являющаяся обобщенной теоремой Пифагора. Зная координаты трех точек плоскости и их порядок «появления» на ней, мы можем с легкостью определить угол, описанный этими точками( Вершина угла — вторая по счету точка ):

image

A( x1;y1 )
B( x2;y2 )
C( x3;y3 )

расстояния между точками находятся по теореме Пифагора

a^ = b^ + c^ — 2*b*c*cos(ALPHA)
cos(BETA) = (b^+c^-a^) / 2*b*c

Зная косинус, величину угла легко можно вычислить.

Среди набора точек, которые подаются на вход алгоритма, необходимо «подставить» точки во всевозможные каркасы фигур( о них выше ) и выбрать наилучшее решение среди найденных. Делается это следующим образом:

  1. Мы берем первую и последнюю точки каркасов фигур. Уже две есть, осталось отыскать третью ( для нахождения величины угла ).
  2. Поиск третьей осуществляется перебором все последующих точек после первой. Решение включать точку в предполагаемый каркас фигуры принимается на основе двух анализов:
    • Попытка подставить точку в угол( в качестве третьей, заключительной ) и проверить его на соответствие величине того же угла в каркасе реальной фигуры.
    • Проверить отношение сторон получившегося угла с тем же отношением сторон угла в каркасе реальной фигуры.

Если эти два условия выполняются, то алгоритм принимает решение о включении точки из набора точек в мыслимый каркас( при этом увеличиваем величину похожести на текущую анализируемую фигуру ).

Если, допустим, у нас есть несколько анализируемых каркасов, например, «8» и «6». И результат алгоритма распознавания: «8»-80%, «6» — 90%, то решение принимается в пользу той фигуры, в каркасе которой присутствует больше контрольных точек, т.е в пользу восьмерки.

Процент сходства набора точек с точками в каркасе высчитывается просто: суммируются все точки, которые сошлись с теми же точками в каркасе и находится отношение. Допустим, если в каркасе N контрольных точек, а у нас сошлось M, то процент сходства — M / N * 100

Читать полностью »

Привет.
Читаю книгу Mahout in Action. Столкнулся с эффектом “смотрю в книгу – вижу фигу”. Для его устранения решил конспектировать.

Apache Mahout – это библиотека для работы с алгоритмами машинного обучения, которая может быть использована как надстройка к Hadoop или самостоятельно. В библиотеке реализованы методы коллаборативной фильтрации, кластеризации и классификации.

Рассматриваем рекомендательную систему на основе коллаборатвной фильтрации. Она может быть пользователе-ориентированной (user-based) или свойство-ориентированной (item-based).

Коллаборативная фильтрация — это один из методов построения прогнозов, использующий известные предпочтения (оценки) группы пользователей для прогнозирования неизвестных предпочтений другого пользователя. Его основное допущение состоит в следующем: те, кто одинаково оценивали какие-либо предметы в прошлом, склонны давать похожие оценки другим предметам и в будущем. (из википедии)

Одно из основных понятий пользователе-ориентированных рекомендательных систем это метрика для определения схожести пользователей. Предположим что мы имеем данные по просмотрам и оценкам фильмов разными пользователями. Будем сравнивать двух пользователей: X и Y. Они выставили оценки фильмам X(x1, x2, ..., xn) и Y(y1, y2, ..., ym), где n, m – количество оценок поставленных первым и вторым пользователем соответственно. N – количество оценок, которые были поставленны обоими пользователями одним и тем же фильмам (пересечение множеств фильмов посмотренных первым и вторым). Будем считать что (xi, yi) – это пара оценок выставленная пользователями одному фильму.
В Mahout реализованы метрики на основании нескольких алгоритмов. Описываю сами алгоритмы, а не их реализации в Mahout.

Читать полностью »

Мы привыкли, что все в нашем мире растет постепенно. На деревьях появляется кольцо каждый год. Подростки в пиковые месяцы роста набирают не более нескольких дюймов. Такие примеры называются линейным ростом. С этим человеческий мозг легко справляется.

Каков он — экспоненциальный рост? Или Яо Мин против Вселенной

Но есть другой рост. Помните притчу о султане и нищем? Когда бедняк просил риса, а султан спросил, сколько ему нужно. Нищий заметил шахматную доску рядом и попросил положить одно зерно риса на первую клетку, два на вторую, четыре на третью и так далее, увеличивая количество зерен вдвое на каждой клетке.Читать полностью »

Женщина математик, которая разрабатывает алгоритмы для лифтов

55-летний американский математик Тереза Кристи (Theresa Christy) работает в компании Otis Elevator Co. и считается одним из лучших специалистов по вертикальному транспорту. Двадцать пять лет своей жизни она посвятила разработке и оптимизации алгоритмов для лифтов. Именно её привлекли во время недавней реконструкции Empire State Building стоимостью $550 млн. Тереза Кристи увеличила скорость лифтов на 20% до 6 м/c, так что они теперь проходят первые 80 этажей всего за 48 секунд.
Читать полностью »

Я, как учитель математики нередко разочаровываюсь в учениках. Они прогуливают. Они ленятся. Они плачут, словно младенцы, если у них отнять калькуляторы. Но хуже всего то, чего они не делают. Не задают вопросов. Не записывают. Не исправляют тесты, даже если это может повысить их общий балл. Разве их не волнуют их неудачи в учебе?

Каково быть слабым в математике

Существует много объяснений такого поведения: лень, равнодушие, отвлекающие внешкольные факторы и т.д. Но если спросите меня, то я назову более глубокую причину: незнание математики заставляет чувствовать себя глупо. А это неприятно.Читать полностью »

Идея этого алгоритма пришла мне в голову ещё в 2006 на лекции по криптографии, как раз посвящённой алгоритму RSA. На ней говорилось, что большое число x из диапазона 22000÷24000 считается простым если удовлетворяет неким критерии простоты и если остальные числа в его окрестностях (x-2000;x) являются составными. Тогда меня удивило, зачем проверять все ближайшие числа на простоту, если можно специально выбирать числа, рядом с которыми в заданном диапазоне все соседи являются составными по-умолчанию? Алгоритм был придуман, описан и опубликован в университетском сборнике, но т.к. их никто не читает, то опубликую его здесь. Авось, кому-то пригодится;)
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js