- PVSM.RU - https://www.pvsm.ru -

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата?

С совершенствованием элементной базы всё меньше энергии уходит в тепловую: снижается сопротивление транзисторов в открытом состоянии, растут частоты импульсных преобразователей напряжения. Но от задачи теплоотвода в рамках текущей полупроводниковой парадигмы никуда не деться, тот же рост производительности при увеличении степени интеграции уже приводит к пределу плотности тепловыделения. Для микросхем с мощностью тепловых потерь более 1 Вт тепловая задача важна не меньше, чем электрическая. Нужно ли отводить тепло на корпус? Или использовать радиатор для микросхемы? Для ответа на эти вопросы не всегда требуется моделирование тепловой задачи с помощью КЭМ. В этой статье рассматриваем достаточно гибкую модель, которая позволяет быстро получить предварительную оценку теплового сопротивления «плата-среда» с хорошей точностью.

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 1


О важности тепловой задачи можно судить по упрощённому эмпирическому правилу, гласящему, что каждое повышение температуры на 10 оС снижает срок наработки до отказа в 2 раза. То есть, если при 55 оС микросхема проработает 10 лет, то при 65 оС только 5. Достаточный аргумент, чтобы несколько улучшить теплоотвод от микросхемы, если не играть в запланированное устаревание. Это правило – далеко не истина в последней инстанции, но качественно оно верно (подробнее можно прочитать, например, здесь [1]).

Организация теплоотвода это почти всегда накладной процесс, который усложняет трассировку, поэтому его нужно планировать заранее. Для этого нужно понимать, сможет ли сама печатная плата справиться теплоотводом. Производители микросхем указывают в документации параметр тепловое сопротивление «кристалл-среда» RθJA. Казалось бы:

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 2

и оценка готова. Но это грубо, очень грубо. Тепловое сопротивление сильно зависит от печатной платы. И то, что указано, было получено в эксперименте на стандартизованной печатной плате (например, как на рисунке 1), которая, скорее всего, будет сильно отличаться от той, что получится у Вас. Скажем так, можно получить гораздо лучший теплоотвод при меньшей площади.

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 3

То, на что стоит обращать внимание – это тепловое сопротивление «кристалл-плата» RθJB или RθJС(bottom). Это то, что уже от разработчика не зависит и определяется корпусом и его внутренней конструкцией. Но тут чаще всего выбор корпуса определяется мощностью тепловых потерь, и основной перепад температур будет на плате. Итак, вышеуказанную формулу для случая теплоотвода через плату переписываем так:

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 4

где RθBA – тепловое сопротивление печатной платы с заданными параметрами. Рассчитать это сопротивление можно на основе красивой модели, которая предложена в которую можно извлечь из замечательной статьи [2] от ON Semiconductor. Статья, на самом деле, не является пошаговой инструкцией, это своего рода набросок модели. Мне пришлось её раз 10 прочитать, чтобы прийти к модифицированной модели, которую в итоге и реализовал в калькуляторе на платформе SamsPcbLab [3]. В основе расчетов лежит чёткая математическая модель (описана вот в этой [4] публикации от тех же ON Semiconductor) тепловой задачи однородного кольца, через внутреннюю поверхность которого гонится поток тепла. Теплоотвод — за счёт конвекции, то есть это не про вакуум (там тепло нужно гнать на корпус). Схема задачи на рисунке 2, а дифференциальное уравнение и интересующая нас часть его решения следующие:

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 5

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 6

Всё с этим уравнением прекрасно (кроме модифицированных функций Бесселя), и можно решать для одной поверхности с конвекцией (убрав «2» в корне), но вот только платы чаще всего без радиальной симметрии и не однородные, а ещё и тепло поступает неравномерно по внутреннему радиусу. Поэтому нужно адаптировать. Первые два вопроса решаются разбиением на кольцевые зоны с однородными свойствами с той же площадью. Для решения последнего нужно строить приближённую модель цепи тепловых сопротивлений. На рисунке 3 — то, что предлагалось в оригинальной статье. Предлагается бить плату на три зоны: зону под микросхемой, зону с полигонами на внешнем слое и зону только с полигонами на внутренних слоях. Учитываются только проводники, которые непосредственно соединены с микросхемой, (условно, «звонятся»).

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 7

Верхний и нижний полигоны предлагается усреднить и взять среднюю площадь металлизации. С этим я не очень согласен, так как влияние на теплоотвод у этих слоёв очевидно разное, плюс они могут сильно отличаться по площади (нижний чаще будет больше по площади). Поэтому я разбил плату на верхнюю и нижнюю половины и делал расчёт для каждой части отдельно.

В статье много графиков с влиянием различных параметров, их полезно посмотреть. Свой подход к разбиению платы откалибровал на этих графиках (рисунок 4) — они для корпусов QFN5X5, QFN6X6 и QFN3X3, соответственно. Когда плата очень большая, график «ложится» на предел, связанный с тепловым сопротивлением переходных отверстий, но их параметры не указаны. Я брал диаметр 450 мкм, толщину стенок 20 мкм, без заполнения.

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 8

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 9

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 10

Видно, что модели коррелируют, но добиваться 100% совпадения я не стал, так как всё равно нет всех входных данных. Кроме того, есть странный момент с переходными отверстиями (рисунок 5), их отсутствие практически не влияет на тепловое сопротивление, что не очень интуитивно.

SamsPcbCalc, часть 2: Сколько тепла может рассеять печатная плата? - 11

Ещё на нижнем графике на рисунке 4 видно два ряда данных, где я считал двухзонную модель двумя методами: с помощью умножения матриц, как описано в статье AND8222/D, и с помощью модели, как на рисунке 3, только зона под микросхемой выброшена (она не вносит вклад в сопротивление). Видно, что график из статьи выходит на примерно ту же асимптоту, как будто отсутствует влияние переходных отверстий. Это для меня стало ещё одним фактором, что в их модели что-то не так с учётом влияния переходных отверстий (либо я чего-то не понимаю).

Калькулятор оказался полезным хотя бы в том плане, что позволил от качественных представлений о влиянии различных параметров перейти к количественным оценкам. Можно сделать вывод, что тепловое сопротивление платы можно загнать в район 10 оС/Вт даже при естественной конвекции. Для рассеивания 2-3 Вт вполне достаточно будет. Ещё полезное замечание, что значимую роль при теплоотводе играет только металл, непосредственно соединённый с микросхемой. Хотя, конечно, чем больше объёмная доля меди в плате, тем будет выше эффективный коэффициент теплопроводности. На основе этого калькулятора можно нарастить наличие радиатора на микросхеме и теплоотвод на корпус, это тоже буду делать. Если там будет что-то интересное, то поделюсь в следующих публикациях.

Автор: Семен Тютюков

Источник [5]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/e-lektronika-dlya-nachinayushhih/357863

Ссылки в тексте:

[1] здесь: https://www.electronics-cooling.com/2017/08/10c-increase-temperature-really-reduce-life-electronics-half/

[2] статьи: https://www.onsemi.com/pub/Collateral/AND9596-D.PDF

[3] SamsPcbLab: https://habr.com/ru/post/519996/

[4] этой: https://www.onsemi.com/pub/Collateral/AND8222-D.PDF

[5] Источник: https://habr.com/ru/post/523164/?utm_source=habrahabr&utm_medium=rss&utm_campaign=523164