- PVSM.RU - https://www.pvsm.ru -

Как правильно плавать в сверхтекучей жидкости

Как мы знаем, любое плывущее в жидкости тело рано или поздно остановится за счет сил вязкого трения, если его движение не поддерживается каким-нибудь двигателем. Но есть жидкости, называемые сверхтекучими, в которых вязкое трение отсутствует(*) [1]. Самый известный пример сверхтекучей жидкости – это жидкий гелий [2], охлажденный, как минимум, до 2.17 градусов выше абсолютного нуля температуры.

Движение при полном отсутствии вязкости проявляется во многих впечатляющих эффектах: сверхтекучий гелий легко протекает через самые узкие щели и трещины, способен бесконечно течь по кругу(**) [3] и вытекать из сосуда через тончайшую жидкую пленку, налипшую на его стенки. Все эти явления – примеры крупномасштабных квантовых эффектов.

В недавней теоретической статье [4] был рассмотрен вопрос: можно ли плавать в сверхтекучей жидкости? Иными словами, может ли гипотетический пловец, двигая руками и ногами, создавать силу тяги, позволяющую ему разгоняться или замедляться, не задействуя силы вязкого трения?

Осознать нетривиальность ответа на этот вопрос можно, рассматривая поведение нормальной и сверхтекучей жидкостей при взаимодействии с телами. Как показано на рисунке, нормальную жидкость можно заставить двигаться, как толкая ее поверхностью твердого тела, так и увлекая ее за собой за счет сил вязкого трения. В сверхтекучей жидкости последнее не получится: трение в ней отсутствует, и ее можно только толкать, что, как мы увидим, делает невозможным некоторые способы плавания.

Как правильно плавать в сверхтекучей жидкости - 1

Для анализа общих принципов физических явлений принято рассматривать простые модели «сферических коней в вакууме». Обсуждаемая статья не является исключением: в ней были рассмотрены двухтельный и трехтельный модельные «пловцы», представляющие собой два и три эллипсоида, соединенных «суставами». Пловцы могут двигать своими эллипсоидами, сгибая и разгибая суставы. Если у пловца получится отталкиваться от окружающей жидкости, он создаст силу тяги и начнет двигаться.

Как правильно плавать в сверхтекучей жидкости - 2

Двухтельный пловец похож на двустворчатого моллюска и может пытаться плыть, периодически изменяя угол между своими эллипсоидами подобно машущей крыльями бабочке. Однако расчеты показывают, что плыть у него не получится: при взмахах пловец перемещается вперед и назад, но в среднем остается на месте (здесь [5] можно посмотреть видео его незамысловатых движений).

Как правильно плавать в сверхтекучей жидкости - 3

Наверху: профиль плотности сверхтекучей жидкости в разные моменты времени. Синие участки, откуда жидкость выталкивается – это эллипсоиды двухтельного пловца.
Внизу: координата пловца как функция времени.

Можно провести параллели между этим результатам и теоремой Пёрселла о морском гребешке (Purcell’s scallop theorem [6]). Эта важная теорема теории плавания гласит, что двустворчатый моллюск, медленно открывающий и закрывающий свою раковину в вязкой жидкости, не будет никуда плыть, коль скоро его движения будут обратимы во времени. Последнее означает, что периодические открывания и закрывания створок раковины не меняют свой вид при запуске времени в обратном направлении (можно представить себе видеоролик, выглядящий просмотре задом наперед точно так же, как при нормальном воспроизведении). В нашем случае жидкость не имеет вязкости, и работает не сама теорема Пёрселла, а ее аналог для сверхтекучей жидкости.

Как правильно плавать в сверхтекучей жидкости - 4

Рисунок из доклада [7] Эдварда Пёрселла (лауреата Нобелевской премии по физике в 1952 году).

Ситуация меняется, когда двухтельный пловец начинает размахивать своими эллипсоидами с большей частотой. Если скорость их движения превышает скорость звука в жидкости, начинают испускаться звуковые волны и вихри(***) [8]. Эти возбуждения уносят с собой некоторый импульс, который, за счет отдачи, заставляет пловца двигаться. На рисунке видно, что в этом случае его координата хоть и колеблется, но с течением времени в целом уменьшается, а это значит, что пловец движется справа налево. После десяти колебаний (справа от пунктирной линии на графике) взмахи створками прекращаются, и пловец продолжает двигаться по инерции (видео [9]).

Как правильно плавать в сверхтекучей жидкости - 5

Можно попробовать и другой тип движения пловца, когда его створки смыкаются и раздвигаются не только в правом направлении, а попеременно в двух направлениях. Такие симметричные движения похожи на взмахи крыльев бабочки. Расчеты показывают, что при этом возбуждается много квантованных вихрей (они видны на рисунке как маленькие кружочки), но, в целом, плавание не очень эффективно. Причина в том, что возбуждается примерно одинаковое количество вихрей, движущихся как вправо, так и влево, и уносимые ими импульсы в значительной мере компенсируют друг друга (видео [10]).

Как правильно плавать в сверхтекучей жидкости - 6

Рассмотрим теперь трехтельного пловца. Перед двухтельным у него есть важное преимущество: он может извиваться, совершая змеевидные движения, которые не переходят сами в себя при обращении времени. А значит, теорема Пёрселла к нему неприменима, и он должен плыть даже при медленных движениях. Приведенные на рисунке расчеты подтверждают эту догадку: при извивающихся движениях пловец уверенно продвигается по горизонтали, при этом немного смещаясь и по вертикали (видео [11]).

Как правильно плавать в сверхтекучей жидкости - 7

Наверху: профиль плотности сверхтекучей жидкости в разные моменты времени. Синие участки, откуда жидкость выталкивается – это эллипсоиды трехтельного пловца.
Внизу: горизонтальная (X) и вертикальная (Y) координаты пловца как функции времени.

Какое применение можно найти полученным результатам? Казалось бы, задача о плавании в сверхтекучей жидкости не особо актуальна на практике, но есть одна область, где она может быть полезной. В последнее время активно развиваются эксперименты с бозе-конденсацией и сверхтекучестью ультрахолодных атомных газов [12], с которыми связывают большие планы по созданию квантовых симуляторов, квантовых компьютеров и экспериментальному моделированию экзотических состояний материи. В таких системах можно создавать сгустки сверхтекучего газа одного вида, погруженные в сверхтекучий газ другого вида. Если мы сможем деформировать сгусток так, как нам нужно (а это можно делать с помощью лазерных лучей), то можно будет заставить этот сгусток плыть, отталкиваясь от окружающего газа. На рисунке показаны расчеты, демонстрирующие такую возможность: когда изменения формы сгустка не являются обратимыми во времени, ему действительно удается двигаться (видео [13]).

Как правильно плавать в сверхтекучей жидкости - 8

Итак, мы видим, что плавать в сверхтекучей жидкости нужно с умом: теорема Пёрселла гарантирует, что мы не сможем плыть, если наши движения руками и ногами будут совпадать с самими собой при проигрывании в обратном направлении. Чтобы начать перемещаться, нам нужно будет либо двигаться быстрее звука (что проблематично), либо извиваться подобно змее, нарушив обратимость движений во времени. Эти выводы хорошо знакомы плавающим в вязкой жидкости микроорганизмам: для того, чтобы обойти теорему Пёрселла, им приходится использовать спирально вращающиеся жгутики, являющиеся аналогами рассмотренного здесь трехтельного пловца.

По материалам статьи [4]:
Hiroki Saito, Can We Swim in Superfluids?: Numerical Demonstration of Self-Propulsion in a Bose–Einstein Condensate, Journal of the Physical Society of Japan 84, 114001 (2015).

двухжидкостная модель [14]), и нормальная компонента будет по-прежнему замедлять движущееся тело. Однако это не мешает сверхтекучей компоненте двигаться полностью без трения.

экспериментах [15] не наблюдалось никакого заметного затухания в течение 18 часов.

квантованные топологические возбуждения [16]. В отличие от обычных вихрей, они не могут просто исчезнуть за счет постепенного затухания потока.

Автор: PhysRevB

Источник [17]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/fizika/251128

Ссылки в тексте:

[1] (*): #note1

[2] жидкий гелий: https://ru.wikipedia.org/wiki/%D0%96%D0%B8%D0%B4%D0%BA%D0%B8%D0%B9_%D0%B3%D0%B5%D0%BB%D0%B8%D0%B9

[3] (**): #note2

[4] недавней теоретической статье: http://dx.doi.org/10.7566/JPSJ.84.114001

[5] здесь: http://journals.jps.jp/doi/suppl/10.7566/JPSJ.84.114001/suppl_file/84-114001sup.1_fig2.mpg

[6] Purcell’s scallop theorem: https://en.wikipedia.org/wiki/Scallop_theorem

[7] доклада: http://dx.doi.org/10.1119/1.10903

[8] (***): #note3

[9] видео: http://journals.jps.jp/doi/suppl/10.7566/JPSJ.84.114001/suppl_file/84-114001sup.2_fig3.mpg

[10] видео: http://journals.jps.jp/doi/suppl/10.7566/JPSJ.84.114001/suppl_file/84-114001sup.3_fig4.mpg

[11] видео: http://journals.jps.jp/doi/suppl/10.7566/JPSJ.84.114001/suppl_file/84-114001sup.4_fig5.mpg

[12] ультрахолодных атомных газов: https://doi.org/10.3367/UFNr.0181.201108g.0875

[13] видео: http://journals.jps.jp/doi/suppl/10.7566/JPSJ.84.114001/suppl_file/84-114001sup.5_fig6.mpg

[14] двухжидкостная модель: https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D0%B5%D1%80%D1%85%D1%82%D0%B5%D0%BA%D1%83%D1%87%D0%B5%D1%81%D1%82%D1%8C#.D0.94.D0.B2.D1.83.D1.85.D0.B6.D0.B8.D0.B4.D0.BA.D0.BE.D1.81.D1.82.D0.BD.D0.B0.D1.8F_.D0.BC.D0.BE.D0.B4.D0.B5.D0.BB.D1.8C_.D0.B3.D0.B5.D0.BB.D0.B8.D1.8F-II

[15] экспериментах: http://dx.doi.org/10.1016/0031-8914(74)90118-9

[16] квантованные топологические возбуждения: https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D1%8B%D0%B9_%D0%B2%D0%B8%D1%85%D1%80%D1%8C

[17] Источник: https://geektimes.ru/post/287426/