- PVSM.RU - https://www.pvsm.ru -
Сегодня коллаборация LIGO & Virgo объявили (будет опубликована в PRL, статью можно почитать тут [1]) о новом детектировании гравитационных волн (GW170814). Первые три события (раз [2], два [3], три [4]) были зарегистрированы на двух детекторах LIGO в США. 1 августа к наблюдениям присоединился европейский детектор Advanced VIRGO [5], расположенный в Италии. А уже 14 августа гравитационные волны от слияния двух черных дыр были зарегистрированы всеми тремя детекторами.

Оценка расположения всех зарегистированных источников гравитационных волн. GW170814 определен с гораздо большей точностью за счет использования данных с трех детекторов.

Верхний ряд: соотношение сигнал-шум для трех детекторов LIGO Hanford, LIGO Livingston и Virgo; средний ряд: изменение спектра сигнала со временем; нижний ряд: временной сигнал (цвет), отфильтрованный сигнал (серый) и наложенная модель ОТО (черный)
Как и в предыдущие три раза, источником сигнала были сливающиеся черные дыры масс 25 и 30 солнечной, на расстоянии около 1.5 миллиарда световых лет. В результате слияния образовалась черная дыра массой ~53 от солнечной, и ~2.7 солнечных массы преобразовалось в гравитационные волны. Соотношение сигнал-шум 18 дает вероятность ошибочного сигнала 1 в 27 тысяч лет. Сам сигнал хорошо соотносится с ОТО, никаких неожиданностей тут нет. Самым интересным является факт детектирования на трех детекторах, и дополнительные знания, которые мы можем из этого получить.


Европейский детектор расположен около Пизы, в Италии. Коллаборация Virgo объединяет ученых из Италии, Франции, Голландии, Польши и Венгрии. Сам детектор похож на Advanced LIGO, но с меньшей чувствительностью из-за нескольких факторов: он несколько короче — длина плеч интерферометра здесь 3км, а не 4, как в LIGO; подвесы зеркал сделаны из металла (меньше добротность и больше тепловые шумы); лазер менее мощный; системы контроля и фильтрации шумов на более ранней стадии воплощения.
В результате чувствительность на высоких частотах в несколько раз меньше LIGO, а сам детектор довольно шумный. На спектре хорошо виден неотфильтрованный шум сети питания на 50Гц, а также пики от разных контрольных сигналов.

Спектральная плотность шумов детекторов (с отфильтрованными известными шумами). Чем ниже шум, тем выше чувствительность детектора.
Малая чувствительность Virgo с трудом позволяет распознать сигнал в шуме (как видно на второй картинке в статье), и без LIGO этот сигнал не был бы признан достаточно достоверным. Однако в комбинации с двумя детекторами LIGO он позволяет триангулировать местоположение источника с гораздо большей точностью.

Регион расположения источника сигнала на небе: желтый — только LIGO, зеленый — LIGO и Virgo вместе, фиолетовый — баесовская оценка расположения с учетом всех параметров модели на основе LIGO и Virgo. Справа: оценка дальности источника.
Кроме того, третий детектор, расположенный в другой плоскости, позволяет сделать оценки на поляризацию ГВ. В ОТО гравитационные волны растягивают и сжимают пространство перпендикулярно направлению своего распространения, и существует две поляризации (х и +)

Picture by Tom Dunne
Когда ГВ прибывает на детектор строго перпендикулярно плоскости интерферометра и ориентация плечей совпадает с поляризацией, амплитуда сигнала достигает максимума. Если, например, x поляризованная волна прибывает на детектор, повернутый на 45 градусов относительно нее, оба плеча растягиваются одинаковым образом, и интерференционная картина на выходе не меняется, то есть, сигнала не будет. Если же есть два детектора, находящихся в разных плоскостях, как LIGO и Virgo, амплитуда сигнала будет отличаться не только за счет наклона относительно направления распространения, но и за счет разной ориентации детектора по отношению к поляризации. Это позволяет оценить поляризацию ГВ. Оба детектора LIGO находятся практически в одной плоскости, и близкой ориентации, но Virgo расположен под большим углом, что значительно улучшает оценки.
Интересный момент тут следущий: метрические теории гравитации (а ОТО только один из них) позволяют не только тензорную (как в ОТО), но и векторную и скалярную поляризацию. Возможность измерения поляризации позволяет проверить, действительно ли мы измеряем тензорную поляризацию. Для этого те же расчеты для слияния, как в случае ОТО, производятся в предположении скалярной или векторной поляризации, и результат сравнивается с реальным сигналом. В результате ОТО оказывается более вероятной моделью, нежели чисто скалярно или чисто векторная.
Второй цикл наблюдений закончен, а ученые обрабатывают полученные данные. Детекторы находятся на обслуживании, и следующий научный цикл начнется где-то через год. За это время будет увеличена мощность лазеров, уменьшены потери на рассеяние света и, возможно, добавлен сжатый свет [6].
Stay tuned!
Автор: Михаил Коробко
Источник [10]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/fizika/264525
Ссылки в тексте:
[1] тут: https://tds.virgo-gw.eu/GW170814
[2] раз: https://geektimes.ru/post/270916/
[3] два: https://geektimes.ru/post/277258/
[4] три: https://geektimes.ru/post/289629/
[5] Advanced VIRGO: https://en.wikipedia.org/wiki/Virgo_interferometer
[6] сжатый свет: https://geektimes.ru/post/266562/
[7] Интерактивная карта неба: http://www.virgo-gw.eu/skymap.html
[8] Тут можно почитать подробнее. : https://arxiv.org/abs/1707.06101
[9] Serge3leo: https://geektimes.ru/users/serge3leo/
[10] Источник: https://geektimes.ru/post/293457/
Нажмите здесь для печати.