- PVSM.RU - https://www.pvsm.ru -

Кометы. Айсберги солнечной системы

image
Самой интересной космической новостью этой недели заслуженно считают встречу европейского зонда Rosetta с кометой 67Р/ Чурюмова-Герасименко [1]. Эта комета, размерами в 3-5 км, далеко не единственная, которая удостаивалась непосредственного внимания межпланетных аппаратов. Однако есть все основания считать эту встречу знаковой и будем надеяться исторической.

Миссия зонда Rosetta является логичным следствием особого, и можно сказать мистического, интереса человечества к «косматым» ( komḗtēs) светилам, как нарекли эти небесные тела еще древние греки. Ниже мы в популярной форме разберем накопленные человечеством знания об космических «айсбергах», и постараемся понять огромный интерес к ним со стороны научного сообщества.

Пунктуальная «горевестница»

История задокументированных наблюдений комет насчитывает несколько тысяч лет, наиболее подробное описание появлений «косматых» светил можно найти в древних китайских хрониках.

Еще тогда появление этих светил связывали с мистическими и чаще всего трагическими событиями. Так появление яркой кометы в 240г до.н.э. было истолковано как знамение о скорой кончине китайской императрицы. Та же самая комета проявившаяся в небе над Римом в 12г до.н.э. уже «предрешила» участь Агриппы, близкого друга и зятя императора Августа. В 6 веке она же «учинила» засуху и беспорядки в Византии, а в 1066г, по убеждению современников, однозначно обрекла Англию на вторжение Вильгельма Завоевателя, герцога Нормандии.

Комета Галлея на гобелене из Байе, 1066 год
image

Впрочем, этой комете было суждено сыграть очень важную роль в истории науки. В 1682 году английским астроном Эдмунд Галлей, вычислив орбиту наблюдаемой им яркой кометы, заметил, что она совпадает с орбитами комет 1531 и 1607г. Предположив, что речь идет об одной и той же комете, он предсказал ее появление в перигее (ближайшая к солнцу точка орбиты) в 1758г.

Ее появление с месячным запозданием в 1759г было более чем достаточно для признания триумфа теории тяготения Ньютона. Комета Галлея нынче стоит в первой строчке огромного списка наблюдавшихся с тех пор комет. Ее индекс 1P/1682 указывает что она первая из комет «вернувшаяся» к Солнцу, относится к группе Р – короткопериодических комет и была открыта в 1682г.

Параметры орбиты кометы Галлея
image

Опять-таки благодаря комете Галлея, прошедшей по диску солнца в 1910г, астрономы смогли оценить примерные размеры кометных ядер, оно оказалось меньше 20 км. Одновременно впервые был произведен спектральный анализ хвоста «косматого» светила, как оказалось богатого ядовитыми цианом и угарным газом. Что вызвало большую панику в том же году, когда Земля прошла сквозь хвост кометы, само собой беспочвенную.

Снимок кометы Галлея 1910 года
Кометы. Айсберги солнечной системы

К следующему прилету кометы в 1986 году, человечество уже не ограничилось наблюдениями с Земли (довольно неблагоприятных в том году). На «перехват» космического «айсберга» отправилась целая флотилия космических аппаратов. Состав «Армады Галлея» был следующим:

Комета Галлея в 1986 году
image

— Два советских зонда «Вега 1» и «Вега 2» [2], пролетевших на расстоянии около 9 000 км от ядра кометы, составивших 3D карту ядра и передавших 1500 снимков (картинка ниже).
image

— Европейской зонд «Джотто», приблизившийся к ядру на расстояние в 605 км, благодаря навигационной помощи советских аппаратов (фото ниже).
image

— Два японских зонда «Суйсэй» и «Сакигакэ», подошедших к ядру на 150 000 и 7 млн км соответственно.
ISEE-3 (ICE) [3] изучавший хвост кометы Галлея с точки Лагранжа L1 (система Земля-Солнце).

Иллюстрация «Армады Галлея», изучавшей комету в 86 г
image

Было получено огромное количество информации о кометном веществе, сделаны тысячи снимков ядра. Оценка размеров ядра кометы подтвердила наблюдения 1910г – ядро неправильной формы 15/8км. Получен большой опыт по взаимодействию разных космических агентств, в решении сложных технологических проблем.

К сожалению, долго ожидавшийся научным сообществом «год кометы Галлея» был омрачен двумя техногенными катастрофами – гибелью экипажа «Челленджера» и аварией на Чернобыльской АЭС.

Помимо кометы Галлея, астрономы насчитывают тысячи наблюдавшихся за последние 300 лет комет. Ядра имеют размеры от нескольких десятков метров до десятков километров, и представляют собой смесь пыли и льда, чаще всего водяного, аммиачного и/или метанового (так называемая модель «грязного снежка» Уиппла). Однако очевидно, что многие ядра могут в некоторой мере отходить от этой модели. Так космический зонд Deep impact, сбросивший «снаряд» на комету Темпеля 1, в 2005 году, позволил установить, что комета состоит в основном из пористого пылевого каркаса.

«Бомбардировка» кометы Темпеля зондом Deep impact [4]и последующий пролет около кометы зонда Stardust [5]

Являясь сохранившимися кирпичиками первичного стройматериала солнечной системы, кометы представляют огромный интерес для геологии, химии и биологии. Предположительно именно кометы доставили в древности на Землю основную часть воды ее гидросферы. В спектральных линиях многих комет обнаружены сложные органические соединения вплоть до аминокислот и мочевины. Ученые предполагают, что именно кометы, являясь инкубаторами сложных органических соединений, могли занести на Землю химическую базу для появления жизни.

Приближаясь к перигелию, кометные ядра, под действием солнечного излучения, начинают извергать огромные объемы газов, минуя жидкое агрегатное состояние таящего льда (возгонка). Газы в свою очередь увлекают за собой большие массы смешанной во льду пыли, которая вместе с частицами льда сдувается, под действием солнечного излучения и ветра, в противоположную от звезды сторону.
Кометы. Айсберги солнечной системы

Размеры кометных «хвостов» могут достигать нескольких сотен миллионов километров в длину. Так, в 1996 году, космический зонд «Ulysses» [6] (НАСА/ЕКА), неожиданно прошел сквозь хвост Большой кометы 1996 года C/1996 Хякутакэ… в 500 млн километров позади нее!

Впрочем, хвосты комет далеко не всегда бывают «прямыми» или направленными обратно от солнца. В зависимости от орбитальных особенностей кометы, его состава, солнечного ветра или взаимодействия магнитного поля солнца с ионизированным веществом «косматого» светила, хвост может быть направлен как перпендикулярно, так и в сторону солнечного излучения. Причем у одной кометы хвост может состоять из нескольких разнонаправленных частей, или вовсе иметь вид огромной газово-пылевой оболочки.

Комета 17Р/ Холмса является примером атипичного строения газопылевой оболочки (кома) кометы, показаны сравнительные размеры ее комы с Солнцем и Сатурном
image

С 1995года, все кометы обычно разделяются на классы: P/ — Короткопериодические кометы, с периодом обращения менее 200 лет. С/ — долгопериодические кометы, с периодом обращения более чем в 200 лет. Х/ — кометы с неизвестными параметрами орбиты (исторические кометы). D/ — разрушившиеся или «утерянные» кометы и наконец класс А/ — астероиды, принятые за кометы.

Столкновение кометы Шумейкеров-Леви 9 с Юпитером в 1994г. Позднее комета переквалифицирована в класс «смертников» D/ 1993 F

Перед индексом класса (чаще всего Р/) обычно располагают порядковый номер подтвержденного прохода кометой перигелия (ближайшей точки орбиты), а после — год открытия. После года открытия обычно выставляют букву обозначающую ½ месяца и порядковый номер открытия, например А для комет открытых в первую половину января и Y соответственно для второй половины декабря. И уже в конце указываются имена первооткрывателей. Так, номенклатурное имя кометы Чурюмова-Герасименко выгляделo бы примерно так: 67P/ 1969 R1. Однако чаще всего сокращается в виде (n)P/Фамилия первооткрывателя.

Особое внимание заслуживает класс «комет экстремалов», проходящих чрезвычайно близко с Солнцу. Почти всегда они фиксируются космическими зондами изучающими нашу звезду — SOHO и «близнецы» Stereo A и B. Предполагается что основная часть этих комет представляет из себя осколки одной гигантской кометы, разрушившейся тысячи лет назад (кометы Крейца)

«Гарем Царя» планет

Основная часть короткопериодических комет в свою очередь делится на 4 больших семейства, по параметрам орбиты и гравитационному влиянию «хозяйской» планеты-гиганта. Наиболее многочисленным «семейством» обладает Юпитер, именно ему «принадлежат » следующие кометы:

19Р/ Борелли [7], рядом с которой работал зонд Deep Space 1 (НАСА) в 2001г;
image

103Р/ Хартли 2, изучалась зондом Deep Impact (НАСА) в 2010г (анимация ниже), после выше упомянутого посещения кометы 9Р/ Темпеля (Темпель 1), другого типичного представителя «семейства»;
image

Комета 81Р/Вильда, рядом с которой зонд Stardust (НАСА) смог собрать образцы пыли и доставить их на Землю в 2006г;
image

Комета 67Р/ Чурюмова-Герасименко [1], изучаемая зондом Rozetta (ЕКА), так же по своим характеристикам относится к «семейству царя» планет.

Далее соответственно следуют семейства комет Сатурна, Урана и Нептуна, причем упомянутая вначале комета Галлея является типичным представителем короткопериодичных комет семейства Нептуна.

«Хаос» в поясе «стабильности»

Некоторые короткопериодические кометы по наиболее популярной среди ученых версии, «прилетают» к нам из внешних границ пояса Койпера – Рассеяного диска (РД). РД вместе с поясом Койпера представляет собой огромный диск из крупных ледяных тел диаметром от нескольких десятков метров, до тысяч километров (Плутон и Харон). Простираясь с расстояния от 35 астрономических единиц (орбита Нептуна), до внешних границ в 50 а.е. ( или 100 а.е. с РД) пояс имеет оценочную массу в 1-8 масс Луны (пояс астероидов не массивнее 0,04 масс Луны). Собственно пояс Койпера в целом стабилен, благодаря орбитальным резонансам [8] с Нептуном и друг с другом.

Карта распределения известных объектов пояса Койпера (график расстояний в a.e.)
Кометы. Айсберги солнечной системы

Современное состояние пояса Койпера и облака Оорта, связывают с древнейшей миграцией Нептуна во внешние области солнечной системы, под действием резонансов Юпитера и Сатурна. Часть вещества была выброшена из солнечной системы, часть, вместе с облаком Оорта — в ее внешние части. Миллионы же других обломков были отброшены во внутреннюю часть солнечной системы, вызвав позднюю тяжелую бомбардировку [9] 4-3,5 млрд лет назад.

Солнечная система перед «миграцией» Нептуна (фиолетовая орбита) — (а), во время (b) и после (с). Зеленым обозначена орбита Урана
Кометы. Айсберги солнечной системы

Для объяснения нестабильности внешнего, рассеянного диска, придется прибегнуть к азам небесной механики. Два главных параметра орбиты небесного тела это апоцентр (точка наибольшего удаления от поверхности планеты или звезды, в последнем случае говорят о апогелии) и перицентр (наиболее близкая точка орбиты, или в случае обращения вокруг солнца — перигелий). Разница между этими значениями выражается в эксцентриситете орбиты – степень ее отклонения от идеального круга (е=0) к эллипсу (e>0, но <1) и дальше к параболе (е=1) и гиперболе (e>1)
image

В двух последних случаях речь идет о траектории невозвращения. Изменение параметров орбиты возможно в любой ее точке, но сильнее всего на апогелий влияют изменения скоростей в перигелии (увеличение апогелия при ускорении и уменьшение при торможении) и наоборот. И чем сильнее эксцентриситет, тем больше эффект от изменения скоростей. Более того, «чувствительность» орбиты к возмущениям возрастает с ее высотой, так как с увеличением орбиты обратно пропорционально падает скорость орбитального обращения тела (люди знакомые с симуляторами Orbiter [10] и KSP [11] знают об этом не по наслышке).

Во внутренней части солнечной системы, в зоне планет земной группы и пояса астероидов, орбитальные скорости тел довольно велики (десятки км/с), а эксцентриситеты относительно малы. Поэтому для сильных орбитальных возмущений необходимо затратить много энергии. На внешней границе пояса Койпера, в рассеянном диске, орбитальные скорости тел обычно лежат в пределах от нескольких км до нескольких сотен м/с, поэтому даже небольшие гравитационные возмущения или столкновения очень сильно изменяют эксцентриситет. Небесное тело значительно увеличивает свой апогелий (ускорение), или уменьшает перигелий (торможение), направляясь во внутренние части солнечной системы.

Таблица разности [12] орбитальных скоростей в солнечной системе? Меркурий — Марс (земная группа), Юпитер — Нептун (гиганты) и Плутон (внутреняя часть пояса Койпера)
image

Космические дальнобойщики

Но все же по наиболее распространенному в научном сообществе мнению, большинство короткопериодических комет класса Р/ и все кометы класса С/ прилетают к нам из предполагаемого облака Оорта. Внутренняя часть Облака, имеет вид тороидального пояса, протянувшегося на расстояние от 2000 до 20 000 астрономических единиц (облако Хиллса). Массу этого облака оценивают минимум в два десятка масс Земли.

Сравнительные размеры орбит планет земной группы на фоне пояса Койпера, и соответственно размеры последнего на фоне облака Оорта
image

Облако Хиллса служит своеобразной подпиткой внешнего, сферического облака, массовой в несколько земных масс, протянувшегося с расстояния с 20 000 а.е. до 1 светового года, до гравитационной границы солнечной системы (сфера Хилла). Именно внешнее облако Оорта и считают главным «поставщиком» комет во внутреннюю часть солнечной системы. Предположительно это остатки первичного «строительного материала» солнечной системы, поэтому данные объекты представляют огромный научный интерес. Эффекты торможения и ускорения, описанные для пояса Койпера, действуют тут гораздо сильнее, из за крайне низких орбитальных скоростей комет (метры в секунду).

Из наиболее известных долгопериодических комет последних десятилетий следует отметить кометы C/1996 B2 Хякутакэ, С/ 2006 R1 и С/ 2009 Р1 Макнота. Явившись к нем из далеких областей облака Оорта, обе кометы в первый и последний раз, пролетев перигелий, навсегда покинули солнечную систему по гиперболической траектории (эксцентриситет больше 1).

C/1996 B2 Хякутакэ на земном небосводе
Кометы. Айсберги солнечной системы

С/ 2006 Р1 Макнота («Большая комета 2007 года») с очередным примером арочной «неправильной» комы
Кометы. Айсберги солнечной системы

В 2010 году комета Еленина (С/ 2010 Х1) намеревалась поступить так же, однако гравитационное возмущение Юпитера «прописало» комету в солнечной системе, снизив эксцентриситет ниже 1 (апогелий около 500 а.е.). Знаменитая «Большая комета 1997 года» Хейла Боппа (С/ 1995 01) намеревалась лишь дать очередной круг почета у перигелия своей, почти перпендикулярной к плоскости Земной, орбиты. Однако неумолимая гравитация Юпитера и в этот раз сократила перигелий кометы вдвое – с 600 (период обращения 4800 лет) до 350 а.е (период обращения 2400 лет).

«Большая комета 1997 года» Хейла Боппа
image

И пожалуй самым большим астрономическим разочарованием 2013 года стала комета ISON (С/2012 S1), двигаясь по параболической траектории (e=1) из самых окраин солнечной системы, небесное тело буквально развалилось при прохождении своего перигелия.

Моделирование истории изменения орбиты нашей старой знакомой кометы Галлея, показало, что она тоже пришла в солнечную систему из далекого облака Оорта. Гравитационные возмущения планет гигантов, как в случае со многими другими кометами, «прописало» ее в семействе комет Нептуна. Апогелий орбиты кометы едва касается пояса Койпера (35 а.е.), а перигелий проходит ближе чем Венера в 88млн км от Солнца. В следующий раз комета вернется к перигелию в 2061 году.

В заключение хотел бы вспомнить слова Марка Твена, как и я родившегося в год появления кометы Галлея (хоть и разницей в 140 лет): «Я пришёл в этот мир с кометой и уйду тоже с ней, когда она прилетит в следующем году» (с) 1909г. Мистер Твен действительно ушел в 1910, а вместе с ним Лев Толстой и известный итальянский астроном Скиапарелли. Согласитесь, не самая скучная компания для путешествия по солнечной системе.

Читателям же я искренне желаю дожить до того знаменательного времени, и пускай никакие техногенные катастрофы или смерть кумиров не испортят вашего впечатления от восхищения красотой знаменитой космической странницы.

image

Автор: praporweg

Источник [13]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/fizika/67096

Ссылки в тексте:

[1] Rosetta с кометой 67Р/ Чурюмова-Герасименко: http://habrahabr.ru/post/232383/

[2] «Вега 1» и «Вега 2»: http://galspace.spb.ru/index223.html

[3] ISEE-3 (ICE): http://habrahabr.ru/post/224045/

[4] Deep impact : http://science.compulenta.ru/277880/

[5] Stardust: http://ria.ru/science/20110325/357609222.html

[6] «Ulysses»: http://www.astrotime.ru/uliss.html

[7] 19Р/ Борелли: http://v-kosmose.com/kometyi-solnechnoy-sistemyi/borelli/

[8] орбитальным резонансам: http://dic.academic.ru/dic.nsf/ruwiki/20823

[9] позднюю тяжелую бомбардировку: http://compulenta.computerra.ru/zemlya/geologiya/10007171/

[10] Orbiter: http://orbit.medphys.ucl.ac.uk/

[11] KSP: https://kerbalspaceprogram.com/

[12] Таблица разности: http://www.petrovlam.ru/v_stat.php?id=9&tabl=biblioteka

[13] Источник: http://habrahabr.ru/post/232631/