- PVSM.RU - https://www.pvsm.ru -

This is Science: Новости с графеновых полей

This is Science: Новости с графеновых полей

Открытие графена – одномерного полупроводника – в 2004 году принесло его создателям Гейму и Новосёлову Нобелевскую премию году в 2010, но уже десятилетие спустя после того самого открытия их последователи интенсивно внедряют в жизнь и предлагают различные применения столь уникального материала: от смазки [1] до вакуумных транзисторов [2].

В начале сего года была опубликована статья «Графен – жизнь или смерть?» [3], в которой мы разбирались в перспективах и, отчасти, последствиях повсеместного внедрения графена, как основы микроэлектроники будущего. Что ж, давайте посмотрим, что на сегодняшний день могут предложить нам учёные в рамках внедрения графена для замещения ставших уже традиционными материалов.

Краткая справка о графене

Графен [4] – одномерный материал, состоящий из sp2-гибридизованных атомов углерода, который обладает рядом интересных с точки зрения физики свойств.

Самое важное и уникальное из них – электрические характеристики. Графен, с одной стороны, имеет фактически нулевую запрещённую зону [5] и очень лёгкие электроны и дырки, что делает его идеальным проводником, способным проводить сигналы быстрее, чем любой другой материал на планете. Однако sp2-гибридизация атомов углерода также позволяет проводить его модификацию, получая, например, изолятор или полупроводник. Плюс к этому переход межу проводящим и полупроводящим состояниями зависит от ширины графеновой ленты [6].

image

С другой стороны он эластичный, то есть гнётся, при этом демонстрируя уникальную и недостижимую прочность на разрыв – до ~1000 ГПа, что в почти в 100 раз выше, чем у стали. А свёрнутый в трубочку графен – углеродная нанотрубка, которая так же может использоваться в электронных устройствах; её диаметр может варьироваться от 1.5 нм до сотен нм.

И наконец, он, графен, прозрачен, то есть просто идеален в качестве замены дорогому – в основном из-за индия – ITO в современных дисплеях и отчасти светодиодах. Однако двумерные системы сами по себе не устойчивы. Таким образом, проблема создания идеально ровного графенового покрытия на какой-либо поверхности – тяжелейшая научно-техническая задача.

Пожалуй, с последнего свойства и начнём.

LED или светодиод на основе графена

Ремарочка. Если мы рассмотрим светодиод как таковой (в лампочках, например), то ему потенциально не требуется подложка из ITO в какчестве электрода, с этим относительно удачно справляются тончайшие металлические контакты (об этом, я некогда писал в отдельной статье [7]). Однако, если требуется создать димплей на массиве светодиодов, то в данном случае замена ITO крайне желательна и полезна, в том числе для улучшения характеристик дисплея.

Итак, одним из промышленных методов нанесения покрытий из графена на различные подложки является PECVD (или плазменно-химическое осаждение из газовой фазы [8]). Заключается данная технология во «впрыске» газа-носителя метана с последующим его разогревом под действием радиочастотного излучения и осаждением углерода на холодную подложку.

Вот группа учёных из Сеульского Национального Университета и вооружилась данным методом нанесения покрытий из графена, предложив прямой способ создания ярких синих диодов минуя стадию переноса графена с подложки на подложку. В таких светодиодах дорогой ITO заменен на более дешёвую подложку из графена, а в качестве светоизлучающего слоя используется нитрид галлия, что является некоторым стандартом для отрасли.

This is Science: Новости с графеновых полей
Слева на право: схема PECVD установки; схема компоновки диода и основные материалы; вольтамперная характеристика диода

Конечно, за счёт варьирования длительности процесса PECVD, можно получать покрытие из графена разной толщины и, соответственно, с различным светопропусканием. Однако, минимальное количество слоёв, как показано на рисунке ниже, позволяет получить практически 100%-ное пропускание света, излучаемого светодиодом, и, как следствие, больший внешний выход по току.

This is Science: Новости с графеновых полей
Слоёный пирог светодиода в разрезе: от сапфировой подложки до 5-6 слоёв графена на поверхности светодиода

Также авторы провели тестирование на воспроизводимость и сравнение с традиционной технологией переноса графена с одной подложки, обычно используемой для роста, на другую, которая уже и будет стоять в конечном устройстве:

This is Science: Новости с графеновых полей
a-c) Тест на воспроизводимость результатов в рамках одного цикла. d-e) Сравнение светодиодов на основе графена, полученных прямым осаждением (DG) и переносом, трансфером графена с подложки на подложку (TG)

Результаты говорят сами за себя: при относительно небольшом разбросе по выходной мощности, полученные светодиоды уверенно опережают обычную, «стандартную» технологию по максимальной мощности при заданном токе (сравнение на рисунке e).

Оригинальная статья в ACSNano (DOI: 10.1021/nn405477f) [9]

Графеновый RF-FET для общения с носимой электроникой

Основная проблема воистину носимой электроники, которая встроена в одежду и никаким образом не привлекает к себе внимания – сочетание гибкости с определёнными характеристиками. Поиску решения данной проблемы и посвятили свои работы коллективы учёных следующих двух статей.

В первой из них тайваньские авторы предложили интересный способ, как создать полевой транзистор на гибкой подложке, который потенциально может стать основой для коммуникации между отдельными элементами носимой электроники.

Итак, нам потребуется: графен, перенесённый на гибкую PET [10] подложку, немножко алюминия, чтобы сделать затвор и капелька живительного кислорода. С помощью литографии наносим затвор из алюминия на полоску графена, а затем оставляем устройство в камере с парой дополнительных атмосфер чистейшего O2. Нам даже ничего не придётся предпринимать, химия и диффузия сделаю всю работу за нас, формируя запирающий слой диэлектрика между алюминием и графеном. После остаётся лишь «запылить», то есть нанести сами контакты.

This is Science: Новости с графеновых полей
Довольно простая и интересная схема изготовления запирающего слоя диэлектрика в графеновом транзисторе

И вуа-ля, сборка транзисторов готова. Вот так это выглядит через око электронного микроскопа:

This is Science: Новости с графеновых полей
Оптическая фотография подложки с полевыми транзисторами (а) и изображения самих транзисторов, полученных с помощью сканирующей электронной микроскопии

Чтобы не утомлять читателей довольно скучными техническими деталями тестирования данного образца полевого транзистора на основе графена, позволю себе сразу обратиться к потенциальным применениям разработки. Авторы работы собрали смеситель частот на основе полученного полевого транзистора и протестировали его, в том числе и при механических деформациях.

Подробнее о принципе работы смесителя частот можно почитать тут [11]. Для краткого пояснения картинки: LO – известная немодулированная частота, относительно которой выполняется преобразование, RF – частота, которая преобразуется/модулируется, IF – используются для подачи и получения сигналов низкой и высокой частот.

This is Science: Новости с графеновых полей
а) Принципиальная электронная схема смесителя частота на основе полевого транзистора. b) Радиочастотный спектр. c-d) Радиочастотные характеристики

Что это нам даёт?! А даёт нам это совершенно крохотный преобразующий элемент радиочастотной техники, который может быть использован, например, для NFC [12]-коммуникации между, например, отдельными устройствами внутри умной одежды.

Оригинальная статья в ACSNano (DOI: 10.1021/nn5036087) [13]

И коль скоро мы затронули тему носимой электроники, то давайте обратимся к примеру создания полевых транзисторов на тканях на основе графена.

Согни меня полностью по-графеновски

Уже другая группа южнокорейских учёных предложила метод создания графеновых ультра-тонких транзисторов на опять-таки ультра-тонкой полимерной подложке, состоящей из специальной эпоксидной смолы.

Сначала на обычную кремниевую подложку, покрытую слоем диоксида кремния, наносят тончайший слой полимера (SU-8), на котором уже и «печатают» транзисторы из графена, а затем слой SiO2 просто растворяют, отделяя таким образом тончайшую плёнку от подложки. При этом плёнку можно переносить на фактически любую поверхность, в том числе на ткань или кожу. Суммарная толщина плёнки – менее 100 нм!

This is Science: Новости с графеновых полей
Процесс создания тонкой плёнки с ультра-тонкими полевыми транзисторами

Однако какие проблемы нас ждут при таком переносе? Правильно, это не равномерность поверхности: изгибы, трещины, заломы – всё, что только может присутствовать на тканевых поверхностях. Ведь изменяя геометрию транзистора, мы тем самым изменяет его транспортные свойства, в том числе подвижность зарядов или распределение электрического поля на затворе, то есть получается, что при одном и том же номинальном напряжении транзистор в согнутом состоянии начнёт вдруг пропускать ток, тогда, как в недеформированном будет его запирать.

К счастью всех этих проблем удалось избежать, в результате оказалось, что положение транзистора (в изгибе или на плоской поверхности ткани) несущественно сказывается на электрическом поведении самого транзистора.

This is Science: Новости с графеновых полей
Тестирование транзисторов при различном их расположении

Равно, как и изгибы, растягивание, складывание ткани пополам:

This is Science: Новости с графеновых полей
Тестирование транзисторов при изгибе, кручении и растягивании

И недолго думая, учёные решили с помощью разработанной технологии создать тактильный сенсор, способный распознать касание в 9 кПа, что эквивалентно давлению в 0.1 атмосферы или 100 граммам силы на см2:

This is Science: Новости с графеновых полей
Тактильный сенсор, способный распознать 0,1 кгс/см2

Данная технология может найти применения в умной одежде, как не требующая специального оборудования для нанесения (как говорится, наклеил и забыл), в том числе, в части носимых и не доставляющих дискомфорт датчиков сердцебиения, уровня кислорода и так далее. Но возможно – чем чёрт корейские учёные не шутят – поможет биороботам и биопротезам приобрести тактильные ощущения.

Оригинальная статья в ACSNano (DOI: 10.1021/nn503446f) [14]

Автор: Tiberius

Источник [15]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/fizika/68295

Ссылки в тексте:

[1] смазки: http://habrahabr.ru/post/223327/

[2] вакуумных транзисторов: http://habrahabr.ru/post/227433/

[3] статья «Графен – жизнь или смерть?»: http://habrahabr.ru/post/208286/

[4] Графен: https://en.wikipedia.org/wiki/Graphene

[5] запрещённую зону: https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BF%D1%80%D0%B5%D1%89%D1%91%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B7%D0%BE%D0%BD%D0%B0

[6] зависит от ширины графеновой ленты: http://www.nanometer.ru/2008/06/17/polevoj_tranzistor_53238.html

[7] в отдельной статье: http://habrahabr.ru/post/131216/

[8] плазменно-химическое осаждение из газовой фазы: http://en.wikipedia.org/wiki/Plasma-enhanced_chemical_vapor_deposition

[9] Оригинальная статья в ACSNano (DOI: 10.1021/nn405477f): http://pubs.acs.org/doi/abs/10.1021/nn405477f

[10] PET: http://en.wikipedia.org/wiki/Polyethylene_terephthalate

[11] тут: https://ru.wikipedia.org/wiki/%D0%A1%D0%BC%D0%B5%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C_(%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B0)

[12] NFC: http://en.wikipedia.org/wiki/Near_field_communication

[13] Оригинальная статья в ACSNano (DOI: 10.1021/nn5036087): http://pubs.acs.org/doi/abs/10.1021/nn5036087

[14] Оригинальная статья в ACSNano (DOI: 10.1021/nn503446f): http://pubs.acs.org/doi/abs/10.1021/nn503446f

[15] Источник: http://habrahabr.ru/post/234401/