- PVSM.RU - https://www.pvsm.ru -

Использование нового полимера на основе нитрида бора может расширить сферу применения конденсаторов в качестве элементов питания

image Пока нефтегазовые компании тратят огромное количество сил и ресурсов на разведку и разработку новых месторождений ископаемого топлива, ученые работают над другой стороной «энергетического вопроса» [1]: хранение и доставка электроэнергии в экстремальных условиях. Сегодня на рынке источников питания доминируют аккумуляторные батареи, но у них есть альтернатива — конденсаторы, которые обладают перед аккумуляторами рядом преимуществ: легкие, быстрый цикл зарядки-разрядки, не теряют емкость со временем.

Для обеспечения корректного функционирования, при создании конденсатора необходимо использовать диэлектрические материалы, которые ведут себя, по сути, как изоляторы, и обеспечивают хранение заряда. Полимерные диэлектрики имеют больший КПД по сравнению с классическими материалами и могут работать в условиях более интенсивных электрических полей без пробоев, что обеспечивает большую надежность изделия.

Сейчас основным недостатком современных конденсаторов является их неспособность работать в условиях высоких температур, что не соответствует требованиям сферы их возможного применения (экстремальные условия). Однако, разработанный композитный полимер лишен этих недостатков и имеет более широкий, чем ранее применяемые материалы, спектр использования. Материал был получен учеными путем соединения частиц традиционного полимера с нанолистами гексагонального нитрида бора.

Новый материал (названный BCB/BNNS) можно успешно использовать как диэлектрик, способный более эффективно предотвращать утечку тока и обладающий стабильной диэлектрической проницаемостью [2]. Материал состоит из бензол-циклобутана, соединенного с нанолистами нитрида бора. По своей структуре используемый учеными нитрид бора похож на графеновые листы толщиной в один атом. Полученный материал обладает превосходными свойствами по сравнению с ранее имевшимися.

Однако, исследователи не являются первооткрывателями. Свойства гексагонального нитрида бора как диэлектрика были известны ранее. Например, в 2010 году, по итогам совместного исследования ученых из университетов в Хьюстоне, Токио и Красноярске, была опубликована работа [3], в которой нитрид бора рассматривался в соединении с графеном как альтернатива кремнию в микроэлектронике.

Для проверки диэлектрических свойств, команда ученых сравнила полученный ими полимер с другими, лучшими из существующих сегодня диэлектриками на рынке. Первым тестом для BCB/BNNS был тест на диэлектрическую проницаемость при частоте переменного тока в 104 ГЦ и температуре до 300 °C.

image
График зависимости диэлектрической проницаемости (для вакуума = 1) материалов при различных температурах.

Как видно на графике, в отличие от других материалов, диэлектрические свойства BCB/BNNS остаются практически неизменными (изменение εr — относительной диэлектрической проницаемости при температуре 300 °C, составляет всего 1,7% против 8% для лучшего из используемого сейчас диэлектрика). Испытания проводились и с использованием постоянного тока, в ходе которых ученые получили такие же результаты.

При использовании диэлектрика как изоляционного материала важно исключить потери энергии. Для BCB/BNNS коэффициент рассеяния не изменяется с ростом температуры окружающей среды. Но новый полимер не идеален: потери от рассеивания увеличиваются с 0,09% до 0,13% при повышении температуры от 25 до 300 °C. Схожие характеристики имеет всего один материал, когда все прочие теряют намного больше заряда с ростом температуры.

image
График изменения коэффициента рассеяния с ростом температуры.

Исследователи также протестировали новый материал в цикле зарядки-разрядки конденсатора и измерили плотность тока при разрядке.

image
Плотность тока при разрядке при температуре 200 °C

image
Эффективность цикла зарядки-разрядки при температуре 200 °C

Полученные результаты можно считать превосходными, так как для полимерных диэлектриков крайне важно удерживать заряд при высоких температурах. При росте утечки тока с повышением температуры снижается эффективность цикла зарядки-разрядки и происходит выделение тепла внутри самого конденсатора, что снижает его параметры и срок службы.

Большинство отказов конденсатора происходит из-за его перегрева и выхода из строя всей конструкции (взрыв и многим знакомое «вздутие» конденсатора). В некоторых случаях повышение температуры конструкции приводит к так называемому тепловому пробою. Несмотря на наличие эффективных диэлектриков, многие из них обладают плохой теплопроводностью, что приводит к аккумулированию тепла внутри конденсатора, что, в свою очередь, повышает риск теплового пробоя. Новый материал имеет имеет коэффициент теплопроводности [4] в диапазоне от 300 до 2000 Вт/(м·K).

image
Тепловой рисунок различных материалов в ходе эксплуатации в сравнении с BCB/BNNS

Полимер BCB/BNNS имеет коэффициент теплопроводности от 300 до 2000 Вт/(м·K). Столь большой диапазон значений коэффициента теплопроводности говорит нам о том, что этот полимер может использоваться, в том числе, и как радиаторный материал в качестве пассивного охлаждения элементов в электронике.

Потенциально BCB/BNNS может применяться и в гибкой электронике будущего, так как он не теряет и не изменяет своих свойств при механическом воздействии (изгибе, скручивании и т.п.), в том числе и при механическом воздействии при высоких температурах (до 250 °C).

Ранее другая группа ученых из Университета Райса рассматривала нитрид бора [5] и в качестве антикоррозийного материала, который предлагалось напылять методом химического парофазного осаждения слоем толщиной в несколько атомов, который защищал от окисления материалы при температуре вплоть до 1100 °C.

via ArsTechnica [6]

Автор: ragequit

Источник [7]


Сайт-источник PVSM.RU: https://www.pvsm.ru

Путь до страницы источника: https://www.pvsm.ru/himiya/95624

Ссылки в тексте:

[1] ученые работают над другой стороной «энергетического вопроса»: http://www.nature.com/articles/nature14647.epdf?referrer_access_token=H0VdQb9eEA6Q286g0hhXiNRgN0jAjWel9jnR3ZoTv0O31ciMWrnRR5PQQ8PxzXQt5LQXLZiLIiLmGQr6Ov_m8XAKoQXth3CluUM2LZou63Hdtn2PwUo-vFhXzjcR0PJLRbsn1jSCzn4h_6imzbev0goDyMF7TWWgjNfuGN-61GD-DzOHFxsaiUOsbDcjJkQaQQyATlQ85TykapOQPChx5Q%3D%3D&tracking_referrer=arstechnica.com

[2] диэлектрической проницаемостью: https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D1%8C

[3] была опубликована работа: http://pubs.acs.org/doi/abs/10.1021/nl1022139

[4] коэффициент теплопроводности: https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C

[5] рассматривала нитрид бора: http://www.nature.com/ncomms/2013/131004/ncomms3541/full/ncomms3541.html

[6] via ArsTechnica: http://arstechnica.com/science/2015/08/a-new-polymer-that-can-boost-capacitors/

[7] Источник: http://geektimes.ru/post/259934/