- PVSM.RU - https://www.pvsm.ru -

В истории о машинах, побеждающих людей, появилась новая глава: ИИ снова победил пилота-человека в виртуальном воздушном бою. Соревнование AlphaDogfight стало финалом испытаний нейросетевых алгоритмов, разработанных для американских вооруженных сил. И наилучшей демонстрацией возможностей интеллектуальных автономных агентов, способных победить вражеские самолеты в воздушном бою. Подробнее — в материале Cloud4Y.
Это не первый раз, когда ИИ побеждает пилота-человека. Испытания 2016 года [1] показали, что система искусственного интеллекта может победить опытного инструктора по боевым полетам. Но симуляция DARPA в четверг, возможно, была более значимой, поскольку она столкнула множество алгоритмов между собой, а затем против человека в сложных условиях. Помимо интеграции ИИ в боевые машины для повышения их боеспособности, подобные симуляции также могут помочь тренировать человеческих пилотов.

В августе прошлого года агентство Defense Advanced Research Project Agency (DARPA) выбрало восемь команд для участия в серии испытаний. В список попали Aurora Flight Sciences, EpiSys Science, Georgia Tech Research Institute, Heron Systems, Lockheed Martin, Perspecta Labs, PhysicsAI и SoarTech (как можно понять, наряду с крупными подрядчиками оборонной промышленности, типа Lockheed Martin вопросом занимались и небольшие компании, вроде Heron Systems).
Целью программы являлось создание ИИ-систем для боевых беспилотников и беспилотных ведомых, прикрывающих пилотируемые истребители. Учёные и военные рассчитывают, что ИИ сможет вести воздушный бой быстрее и эффективнее человека, снизить нагрузку на летчика, предоставив ему время для принятия важных тактических решений в рамках более масштабной боевой задачи.
Первый этап AlphaDogfight Trials проводился в ноябре 2019 года в лаборатории прикладной физики университета Джонса Хопкинса. На нем нейросетевые алгоритмы, созданные разными командами, вели воздушный бой с системой искусственного интеллекта Red, созданной специалистами DARPA. Бои между алгоритмами велись в режиме 1х1 на низком уровне сложности. Второй этап испытаний прошел в январе 2020 года. Он отличался от первого повышенной сложностью. Заключительный этап испытаний, состоявшийся 20 августа 2020 года, можно было посмотреть в прямом эфире на YouTube-канале DARPA [2].
Испытания проводились в авиационном симуляторе FlightGear с использованием программной модели динамики полета JSBSim. В первых двух этапах нейросетевые алгоритмы управляли тяжёлыми истребителями F-15C Eagle, а в третьем — средними F-16 Fighting Falcon.
На третьем этапе испытаний нейросетевые алгоритмы сперва провели воздушные бои друг с другом. Победителем всех боев была признана система, созданная компанией Heron Systems. Воздушные бои велись на ближней дистанции с использованием только пушечного вооружения.
Затем алгоритм Heron Systems провел воздушный бой с опытным летчиком-истребителем и инструктором ВВС США с позывным Banhger. Всего было проведено пять боев. ИИ-алгоритм одержал победу во всех. «Стандартные приёмы воздушного боя, которые изучают летчики-истребители, не сработали», — признал проигравший машине пилот. Но в последних раундах человек смог продержаться дольше.
Причина в том, что ИИ не могли учиться на собственном опыте во время реальных испытаний. К пятому, последнему раунду воздушной схватки пилот-человек смог значительно изменить свою тактику, что и позволило продержаться намного дольше. Тем не менее, недостаточная скорость обучения опытного лётчика привела к его поражению.
Другим победителем испытаний можно назвать глубокое обучение с подкреплением, при котором алгоритмы искусственного интеллекта снова и снова, иногда очень быстро, испытывают задачу в виртуальной среде, пока не разовьют нечто вроде понимания. Какой тип нейронной сети использовали разработчики, не раскрывается. Heron Systems использовала обучение с подкреплением для обучения нейронной сети. Во время обучения сеть провела четыре миллиарда симуляций.
Второй результат в виртуальных воздушных боях показал алгоритм, разработанный компанией Lockheed Martin. Его подготовка также велась методом обучения нейросети с подкреплением.

Ли Ритхольц, директор и главный архитектор искусственного интеллекта из Lockheed Martin, после испытаний рассказал журналистам, что попытка заставить алгоритм хорошо работать в воздушном бою сильно отличается от обучения программному обеспечению просто «летать», то есть поддерживать определённое направление, высоту и скорость.
«Изначально компьютерная программа не понимает даже самые элементарные вещи, что ставит её в уязвимое положение по сравнению с любым человеком. Вам не нужно объяснять пилоту, что он не должен врезаться в землю. Это базовые инстинкты, напрочь отсутствующие у машины. Преодоление этого незнания требует обучения алгоритма тому, что за каждую ошибку приходится платить. Обучение с подкреплением вступает в игру, когда алгоритм назначает веса [затраты] каждому маневру, а затем повторно определяет эти веса по мере обновления своего опыта.
Процесс сильно варьируется в зависимости от входных данных, включая сознательные и бессознательные предубеждения программистов в отношении того, как структурировать моделирование. В команде были жаркие споры на тему того, что лучше: написать программное правило, основанное на человеческих знаниях, чтобы ограничить ИИ, или позволить ИИ учиться методом проб и ошибок. Мы решили, что внедрение правил ограничивает производительность программы. Ей нужно учиться методом проб и ошибок», — рассказал Ритольц.
Нет сомнений в том, что ИИ может учиться, и очень быстро. Используя локальные или облачные ресурсы для моделирования воздушных боёв, что он может повторять урок снова и снова на нескольких машинах. У Lockheed, как и у нескольких других команд, был пилот-истребитель. Они также могли запускать обучающие наборы на 25 серверах DGx1 одновременно. Но то, что они в конечном итоге производили, могло работать на одном GPU [3]. Для сравнения, после победы Бен Белл, старший инженер по машинному обучению в Heron Systems, сказал, что их алгоритм прошёл не менее 4 млрд симуляций и приобрёл примерно 12 лет опыта.
В итоге DARPA поздравили с победой [4] стартап Heron Systems, чей алгоритм сумел обойти разработки более крупных компаний вроде Lockheed Martin.
Что ещё интересного есть в блоге Cloud4Y [5]
→ «Сделай сам», или компьютер из Югославии [6]
→ Госдепартамент США создаст свой великий файерволл [7]
→ Искусственный интеллект поёт о революции [8]
→ Какова геометрия Вселенной? [9]
→ Пасхалки на топографических картах Швейцарии [10]
Подписывайтесь на наш Telegram [11]-канал, чтобы не пропустить очередную статью. Пишем не чаще двух раз в неделю и только по делу.
Автор: Cloud4Y
Источник [12]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/ii/356208
Ссылки в тексте:
[1] Испытания 2016 года: https://habr.com/ru/post/395525/
[2] YouTube-канале DARPA: https://youtu.be/NzdhIA2S35w
[3] на одном GPU: https://www.cloud4y.ru/cloud-hosting/gpu/
[4] поздравили с победой : https://twitter.com/DARPA/status/1296564745751994368
[5] Cloud4Y: https://www.cloud4y.ru/?utm_source=habr&utm_medium=referral&utm_campaign=article
[6] «Сделай сам», или компьютер из Югославии: https://habr.com/ru/company/cloud4y/blog/514738/
[7] Госдепартамент США создаст свой великий файерволл: https://habr.com/ru/company/cloud4y/blog/514606/
[8] Искусственный интеллект поёт о революции: https://habr.com/ru/company/cloud4y/blog/505000/
[9] Какова геометрия Вселенной?: https://habr.com/ru/company/cloud4y/blog/499320/
[10] Пасхалки на топографических картах Швейцарии: https://habr.com/ru/company/cloud4y/blog/490734/
[11] Telegram: https://t.me/cloud4y
[12] Источник: https://habr.com/ru/post/516078/?utm_source=habrahabr&utm_medium=rss&utm_campaign=516078
Нажмите здесь для печати.