- PVSM.RU - https://www.pvsm.ru -
Я хочу представить вам результат своих экспериментов с алгоритмами распознавания образов с обучением с первого раза (так называемый One-Shot Learning). В результате экспериментов выработались определённые подходы к структуризации изображения и в итоге они воплотились в несколько взаимосвязанных алгоритмов и тестовое приложение на Android, которым можно проверить качество и работоспособность алгоритмов.
Моя цель была создать алгоритм с понятным принципом работы который может найти абстрактные зависимости в картинке с первого раза (обучиться) и показать приемлемое качество распознавания (поиска подобных абстрактных зависимостей) на последующих циклах распознавания. При этом логика принятия решения должна быть прозрачной, поддающейся анализу, ближе к линейному алгоритму. На условной шкале где на одном конце а на другом станок с ЧПУ он гораздо ближе к станку чем нейросети.
На данный момент нейросети царствуют в задачах распознавания, в частности CNN является своего рода стандартом для распознавания образов. Однако, на мой взгляд, их применение не безгранично и нужно искать другие подходы.
Приведу несколько причин против нейросетей:
Основная идея такая: изображение- образец должно быть структурировано, т.е. информация в нем должна быть уменьшена до необходимого минимума, но так чтобы не терялся смысл. Например художники рисуют скетчи – всего в несколько точных линий художник может изобразить лицо человека или какой то предмет и зрителю будет понятно что изображено. Фотография содержит матрицу N*M пикселей каждый пиксель содержит сколько то бит информации о цвете, а если представить это все в виде параметров линий то объем информации резко уменьшается и обработка такой информации гораздо проще. Примерно тоже самое должен делать алгоритм. Он должен выделить главные детали в кадре – то что несет в себе основную информацию и отбросить все лишнее.

Алгоритм находит структуру векторов по границам объектов в образце и такую же структуру в распознаваемом изображении.

Для того чтобы получить вектора изображение проходит несколько стадий обработки:

В анализируемом алгоритме происходит тоже самое. Далее полученные массивы векторов сравниваются:
Таким образом маленькие детальки входят в общую картину и происходит лавинообразное распознавание образа.
Сама классификация построена по принципу поиска наиболее похожего изображения из хранимых. Наиболее похожее – это имеющее наибольшее количество совпадающих векторов с наименьшими отклонениями по отношению к общему объему векторов в образце.
Общая схема работы алгоритмов:
Не смотря на то что алгоритм может эффективно работать с одного образца, имеется возможность повышать точность распознавания, анализируя несколько образцов. Это не реализовано в демо-версии, поэтому я просто расскажу про такую возможность, это очень просто. Принцип обучения на нескольких образцах заключается в отбрасывании лишних векторов. Лишние – это те которые не вошли во взаимно найденный кластер векторов. Например на образце может быть тень, которая распознается как граница, а на следующем образце ее может не быть.
Таким образом если вектор входим в состав кластера котрый найден в сохраненном образце и в анализируемом то он получает +1 балл, а если нет то ничего не получит. Спустя несколкьо обучений вектора которые набрали мало баллов удаляются из сохраненного образца и более не используются для анализа.
Также можно сделать визуальный редактор который просто позволит убрать ненужные вектора с кадра после первого обучения.
Честно говоря я все усилия сконцентрировал на самом алгоритме. Хотя т.к. я работаю с среде бизнес решений и автоматизации производства то одно применение я вижу – распознавание продукции на складах и производственных линиях – тут как раз нет больших датасетов – то образец надо показать 1 раз после чего распознавать. Как привязка штрих кодов только без штрих кодов. Ну а вообще применение такое же как и у любого другого алгоритма распознавания. Применение обусловлено возможностями и ограничениями алгоритма.

Приложение работает с матрицей 100*100 пикселей, преобразует картинку к монохромной матрице такого размера. Алгоритму не важно под каким углом находится образец и его размеры в некоторых пределах тоже.
Слева показывается результат выделения значимых областей текущего изображения и совпадающие векторы в нем (зеленым цветом), а справа показываются структуры векторов найденная и наиболее подходящая из сохраненных и красным цветом выделены похожие вектора на сохраненной структуре. Таким образом красным и зеленым цветом подсвечены структуры векторов которые алгоритм считает похожими.
Можно сохранить несколько образцов. И показывая новое изображение алгоритм найдет наиболее подходящее из них и покажет похожие части.
Автор: dv1555
Источник [2]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/iskusstvenny-j-intellekt/283236
Ссылки в тексте:
[1] мозг: http://www.braintools.ru
[2] Источник: https://habr.com/post/414425/?utm_campaign=414425
Нажмите здесь для печати.