- PVSM.RU - https://www.pvsm.ru -
Исследователь машинного обучения из Вирджинского технологического института предложил способ рассмотрения научных работ с использованием ИИ, оценивающего внешний вид текста и графики в документе. Достаточно ли будет его методов оценки «законченности» научной работы для ускорения процесса независимого рецензирования?
В области машинного обучения наблюдается целая лавина исследований. Эту ситуацию инженер из Google Клифф Янг сравнил с законом Мура [1], приспособленным для публикаций на тему ИИ – количество академических работ по этой теме, появляющихся на сайте arXiv, удваивается каждые 18 месяцев.
И эта ситуация создаёт проблемы при рецензировании работ – опытных исследователей в области ИИ просто недостаточно для того, чтобы тщательно прочесть каждую новую работу. Могут ли учёные доверить ИИ работу по приёму или отклонению работ?
Этот интересный вопрос поднимает отчёт [2], недавно опубликованный на сайте arXiv; автор работы, исследователь в области машинного обучения Цзя-бинь Хуан [Jia-Bin Huang] назвал её «Глубинный гештальт работы».
Хуан использовал свёрточную нейросеть — распространённый инструмент в области машинного обучения, применяемый для распознавания изображений – чтобы просеять 5000 работ, опубликованных с 2013 года. Хуан пишет, что только по одному внешнему виду работы – смеси текста и изображений – его нейросеть может отличить «хорошую» работу, достойную включения в научные архивы, с точностью в 92%.
Для исследователей это означает, что во внешнем виде их документа самую важную роль играет пара вещей: яркие картинки на заглавной странице исследовательской работы и заполнение всех страниц текстом, так, чтобы в конце последней страницы не оставалось пустого места.

Свёрточная нейросеть Хуана переваривает тысячи одобренных и не одобренных научных работ, создавая «тепловую карту» сильных и слабых сторон. Крупнейшие ошибки работ, не прошедших отбор: отсутствие цветных картинок и пустое место в конце последней страницы.
Хуан основывает свою работу на другой работе от 2010 года, автором которой был Карвен фон Бирненсквош [Carven von Bearnensquash] из Университета Финикса. В работе использовалось не глубинное обучение, традиционная технология компьютерного зрения, чтобы найти способ «одним взглядом оценить общий внешний вид» работы и сделать вывод о том, стоит ли одобрять работу.
Используя эту идею, Хуан скормил компьютеру 5618 работ, принятых на двух важнейших конференциях по компьютерному зрению, CVPR и ICCV за последние пять лет. Также Хуан собрал работы, представленные на рабочих семинарах конференций, которые играли роль отвергнутых работ – поскольку доступа к работам, отвергнутым на конференциях, нет.
Хуан натренировал сеть, чтобы она ассоциировала прошедшие и не прошедшие работы с двоичным исходом «хорошая» и «плохая», чтобы вычленить из них признаки «законченности» или гештальта. Гештальт – это нечто целое, превышающее по размеру сумму его частей. Это то, что пионер машинного обучения Терри Сейновски назвал «всеобщим организованным восприятием», нечто более осмысленное, чем холмы и овраги местности, находящейся в непосредственной близости к вам.
Натренированную сеть затем проверили на подмножестве работ, которые она не видела ранее. Обучение сбалансировало ложные положительные срабатывания – принятые работы, которые стоило отвергнуть – с ложными отказами, отвергнутыми работами, которые стоило принять.
Ограничивая количество «хороших», но отвергнутых работ 0,4% — то есть, всего 4 работами – сеть смогла правильно отвергнуть половину «плохих» работ, которые и нужно было отвергнуть.
Автор даже додумался скормить собственную работу собственной нейросети. В результате нейросеть её отвергла: «Мы применили натренированный классификатор к этой работе. Наша сеть безжалостно предсказала, что с вероятностью в 97% эту работу нужно отвергнуть без независимого рецензирования».
Что касается этих косметических требований – красивых картинок в статье – Хуан не просто описывает результаты работы. Он ещё предлагает код, который позволит создавать хорошо выглядящие работы. Он скармливает «хорошие» работы в тренировочную базу данных генеративно-состязательной сети, которая может создавать новый план, обучаясь на примерах.
Хуан также предлагает и третий компонент, «переделывающий» отвергаемую работу в допустимую, «автоматически дающий советы по тому, что нужно поменять во входящей работе», к примеру, «добавить картинку для привлечения внимания и картинки на последней странице».
Хуан предполагает, что подобный процесс одобрения работ может стать «предварительным фильтром», облегчающим нагрузку на рецензентов, поскольку он способен просмотреть тысячи работ за несколько секунд. И всё же «вряд ли такой классификатор будет использоваться на реальной конференции», — заключает автор.
Одно из ограничений работы, которое может повлиять на её использование состоит в том, что даже если внешний вид работы, её визуальный гештальт, совпадает с историческими результатами, это не гарантирует наличия в работе реальной ценности.
Как пишет Хуан, «игнорируя содержание работ, мы можем несправедливо отвергнуть работы с хорошим материалом, и плохим визуальным оформлением, или принять хреновые работы, выглядящие хорошо».
Автор: SLY_G
Источник [3]
Сайт-источник PVSM.RU: https://www.pvsm.ru
Путь до страницы источника: https://www.pvsm.ru/iskusstvenny-j-intellekt/305261
Ссылки в тексте:
[1] законом Мура: https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/
[2] отчёт: https://arxiv.org/pdf/1812.08775.pdf
[3] Источник: https://habr.com/post/436036/?utm_campaign=436036
Нажмите здесь для печати.