Космические сверхзвуковые парашюты

в 6:02, , рубрики: космонавтика, Научно-популярное, парашюты, сверхзвуковые парашюты

Мы привыкли к тому, что парашют — это то, что раскрывается на финальном этапе посадки. Но так происходит в наших, земных условиях. Плотности атмосферы достаточно, чтобы купол замедлил скорость снижения. И то, парашютистов-людей учат принимать правильное положение, чтобы не поломать ноги, а техника садится с надувными амортизаторами или двигателями мягкой посадки, включающимися на последних секундах. Но в Солнечной системе на небесных телах разные условия, и иногда парашюты выступают в непривычной роли промежуточного этапа посадки. Они раскрываются на огромных, сверхзвуковых скоростях и по форме и пропорциям в лучшем случае лишь отдаленно напоминают нам привычные, земные купола. А еще для замедления в атмосфере предлагаются совсем особенные конструкции.

Космические сверхзвуковые парашюты - 1
«Кьюриосити» снижается на парашюте, фото с орбитального аппарата Mars Reconnaissance Orbiter/NASA

Немного физики

Выпрыгнувший из самолета парашютист испытывает невесомость только первые мгновения. Сила сопротивления воздуха растет пропорционально квадрату скорости, и очень быстро парашютист достигнет предельной скорости падения, когда сила притяжения и аэродинамическое сопротивление уравновесятся. Сопротивление зависит от формы тела, поэтому для обычного парашютиста, падающего плашмя в тропосфере, предельная скорость падения равна примерно 50 м/с, а у первой ступени Falcon 9 перед последним включением двигателя и посадкой она составляет примерно 300 м/с. Роднит эти скорости то, что они дозвуковые. Даже ступень Falcon 9, которая падает вертикально и тормозится меньше всего, самостоятельно замедляется ниже скорости звука еще до финального включения двигателя. А для побития рекорда скорости в свободном падении Феликсу Баумгартнеру пришлось забраться на стратостате до высоты почти 39 км, где атмосфера разрежена и меньше задерживает падение.

Космические сверхзвуковые парашюты - 2
Обтекание парашюта космического корабля Orion, источник

Форма привычного нам парашюта выбрана экспериментально, чтобы создавать максимальное сопротивление при минимальной площади. И если мы посмотрим на то, как воздух обтекает обычный, дозвуковой, парашют, то увидим достаточно очевидную картину — купол парашюта выступает как препятствие движению воздуха. Воздух частично обтекает купол и образует за ним зону большой аэродинамической тени с вихрями. Более быстрое движение воздуха по центру — результат специально сделанного отверстия, чтобы купол не раскачивался.

Космические сверхзвуковые парашюты - 3
Расчетное и фактическое обтекание сверхзвукового парашюта, изображение Vorticity

На сверхзвуковой же скорости радикально меняется характер обтекания движущегося в воздухе тела. Перед ним формируется скачок уплотнения (ударная волна). Первые испытания показали, что обычные купола становятся нестабильными, пришлось увеличивать проницаемость купола и экспериментировать с его формой. Также на работу купола влияет возмущение от впереди летящего полезного груза, необходимо подбирать правильную длину строп, чтобы купол не начал схлопываться.

Космические сверхзвуковые парашюты - 4
Поведение парашютов в зависимости от скорости и проницаемости ткани. Область внизу — парашют раскачивается, прерывистая линия — район, где парашют схлопывается и наполняется снова

В земных условиях парашюты снижают скорость с десятков (50 для парашютиста, 90 для спускаемого аппарата корабля “Союз”) до единиц метров в секунду. Например, СА “Союза” на высоте 9-11 км имеет предельную скорость снижения 240 м/с, гасит ее до 90 м/с небольшим тормозным парашютом площадью 14 м2 и раскрывает основной парашют. На последних метрах посадки СА “Союза” снижается со скоростью 9 м/с, а обычный круглый купол Д-1-5у обеспечивает около 5 м/с. Обе эти скорости достаточно велики, чтобы представлять опасность при неосторожном касании поверхности, поэтому парашютистов учат держать ноги вместе, а СА “Союза” включает специальные тормозные двигатели для мягкой посадки.

Космические сверхзвуковые парашюты - 5
Пламя работы ДМП смотрится очень красиво. Посадка “Союз МС-11”, фото NASA/Bill Ingals

Можно ли обойтись без двигателя мягкой посадки? Если для уменьшения скорости снижения попытаться увеличить площадь, а следовательно, массу купола, то для безопасной скорости она станет нерационально большой. Еще есть вариант сажать корабль на воду (“Меркурии”, “Джемини”, “Аполлоны”, “Орион”), если корабль входит в воду под углом, то она работает как амортизатор. Также можно надувать воздушные мешки (Boeing Starliner).

А на поверхности Марса давление в 160 раз меньше земного, поэтому для финального этапа посадки парашютов точно не хватит — если переместить земного парашютиста в стандартном снаряжении на Марс, то после раскрытия купола он разбился бы, ударившись о поверхность на скорости ~60 м/с (200 км/ч). Предельная скорость падения парашютиста до раскрытия купола для Марса примерно в шесть раз больше земной — ~280 м/с (около поверхности). Она выше скорости звука на Марсе — ~244 м/с.

В результате посадка на Марс отличается от возвращения на Землю. На первом этапе спускаемый аппарат снижает скорость с нескольких километров в секунду до примерно 400 м/с, находясь в аэрооболочке с теплозащитным щитом. Затем раскрывается сверхзвуковой парашют, тормозящий спускаемый аппарат до примерно 60-100 м/с. И, наконец, третий, финальный этап посадки отличается наибольшим разнообразием технических решений — аппараты спускаются на своих двигателях (“Викинги”, MARS InSight, “Скиапарелли”), тормозятся сбрасываемыми двигателями и садятся в надувных шарах амортизаторов (Mars Pathfinder, марсоходы Spirit/Opportunity), опускаются на поверхность под специальной платформой на ракетных двигателях (Curiosity), а легкие аппараты обходятся без тормозных двигателей (Beagle-2) или, притормозив ими, падают на амортизатор (“Марс-3”).

Творческое переиспользование

И СССР, и США, собравшись отправлять аппараты для мягкой посадки на Марс, столкнулись с задачей испытания выполняющих ее систем. И если поведение теплозащиты уже было известно по испытаниям боеголовок межконтинентальных ракет и возвращающихся с земной орбиты аппаратов, а финальный этап посадки можно было проверить, сбрасывая аппараты с вертолета, то для проверки работы сверхзвукового парашюта нужно было подобрать специальные условия. К счастью, на Земле это можно было сделать. На высоте 30-40 км плотность атмосферы не сильно отличается от марсианской, а, используя ракетные двигатели, тестовые стенды можно было разогнать до сверхзвуковых скоростей. И по обе стороны океана инженеры пришли к похожим решениям. В СССР сверхзвуковые парашюты для “Марсов” тестировали, поднимая их в стратосферу на метеорологических ракетах М-100Б. Испытания оказались полезными, в воспоминаниях рассказывается о тенденции первой версии парашюта к схлопыванию на скорости 3,5М, которую заметили и смогли исправить.

В США для “Викингов” испытательный стенд был несколько сложнее — аппарат поднимали на высоту 36 км на стратостате, а затем разгоняли твердотопливными двигателями. Сохранились даже кадры испытаний августа 1972 года. Им повезло — пленки забыли в списанном и проданном шкафу и чуть не потеряли совсем, но случай и энтузиаст космонавтики не позволили им пропасть.

Всего было проведено 4 испытания, все успешные, но не потому, что сразу повезло найти подходящее техническое решение. Дело в том, что программа “Викинг” использовала наработки 60-х годов по созданию парашютов для космических аппаратов — Planetary Entry Parachute Program (PEPP), Supersonic Planetary Entry Decelerator (SPED) и Supersonic High Altitude Parachute Experiment (SHAPE), а испытательные полеты были только вершиной программы испытаний, включавшей в себя тесты в аэродинамической трубе, бросковые испытания и проверки пировыбрасывателя.

В PEPP, SPED и SHAPE провели в общей сложности 16 испытательных полетов, из которых удачными оказались только 11. На основе предыдущих экспериментов проверялись три наиболее перспективных типа купола — круглощелевой (ringsail), крестообразный и тип “диск-разрыв-полоса” (disk-gap-band, DGB).

Испытания крестообразного купола

Последний тип, DGB, оказался наиболее подходящим по тормозящей силе и стабильности для сверхзвукового раскрытия. Именно его и стали ставить на аппараты NASA в последующие десятилетия.

Испытания DGB-купола

Не Марсом единым

Внимательный читатель спросит: “А почему разговор только про Марс? Как же другие планеты?” Марс — самая частая арена для сверхзвукового парашюта, но не единственная. И если вы подумали про Венеру, то ошиблись — плотность ее атмосферы такова, что спускаемые аппараты еще до раскрытия парашюта тормозятся до дозвуковых скоростей, и условия для спуска на парашюте сравнимы с земными. Скорость звука на Венере ~410 м/с, а первый аппарат, снижавшийся в ее атмосфере, “Венера-4”, раскрыл парашют на скорости примерно 210 м/с. Сверхзвуковой парашют использовался при снижении на Титане. Причем, учитывая особенности атмосферы спутника Сатурна, на европейском зонде “Гюйгенс” применили любопытное техническое решение: сначала на скорости 400 м/с (для Титана это примерно 2М) открывается сверхзвуковой парашют. А спустя 15 минут он сбрасывается, и открывается тормозной/посадочный парашют. Дело в том, что площадь сверхзвукового парашюта быстро становится избыточной, и зонд мог замерзнуть еще до достижения поверхности. Поэтому второй парашют меньшей площади обеспечивает начальную скорость снижения в 94 м/с, которая к поверхности уменьшается до 4,7 м/с за счет увеличения плотности атмосферы.

Спуск «Гюйгенса» на Титан

На юбилей, 20 лет миссии, парашют развернули для съемок канала Discovery.

Космические сверхзвуковые парашюты - 6
Фото Vorticity Systems

Внимательный читатель увидит на этой фотографии уже известную компоновку “диск-разрыв-полоса” DGB. Действительно, технологии, отработанные на марсианских аппаратах, пригодились совсем в другом уголке Солнечной системы.

Раз уж зашла речь о европейских аппаратах, можно вспомнить “Скиапарелли”, который разбился на финальном этапе, но смог вполне успешно затормозить на DGB сверхзвуковом парашюте.

Космические сверхзвуковые парашюты - 7
Фото ESA

Надувные летающие тарелки

Законы физики не изменились, и DGB-парашют можно использовать и сейчас, но для сравнительно небольших аппаратов. Дальше начинается неисследованная зона — в 60-х единственное испытание с нагрузкой больше тонны окончилось неудачно. Немного грузоподъемности можно выиграть, применяя новые материалы купола и строп, но уже Curiosity вплотную подошел к пределу безопасности, который могла обеспечить старая технология. А ведь хочется сажать на Марс все более тяжелые аппараты. Нужно придумать что-нибудь новое. Таким экспериментальным проектом стал Low-Density Supersonic Decelerator (LDSD). Здесь пытаются реализовать сразу два изменения. Во-первых, DGB-парашют меняют на круглощелевой. Во-вторых, для дополнительного замедления площадь аэрооболочки увеличивают, надувая кольцевой “воротник”.

Космические сверхзвуковые парашюты - 8
Изображение NASA

Новая система должна будет обеспечить посадку на Марс 2-3 тонных зондов. Но в двух испытаниях парашют порвался. Третье ожидалось в 2016, но до сих пор о нем ничего не слышно.

Так что парашют для ровера 2020 года еще может ставить рекорды, раскрываясь за 0,4 секунды и выдерживая пиковую нагрузку в 37 тонн, но для посадки чего-либо более тяжелого, чем ровер-2020, просто увеличить его уже не получится.

Космические сверхзвуковые парашюты - 9
Раскрытие парашюта ровера-2020

Воротник-волан

Идея раскрывающегося “воротника” LDSD базируется на принципиально другом подходе, когда вместо привычного парашюта используется надувной “волан”. И здесь последними по времени будут несколько российских испытаний разной степени удачности. В 2000 году на орбиту отправились разгонный блок “Фрегат” и капсула с приборами. Они затормозили, чтобы войти в атмосферу, и раскрыли «воланы» перед входом в плотные ее слои. От “Фрегата” нашли только титановые баки, а вот капсула, даже несмотря на отказ второго, более широкого “воротника”, пережила падение. В 2001 и 2002 году, к сожалению, полезную нагрузку найти не смогли. В пуске 2005 года тестовый стенд вышел на связь, пройдя этап торможения в облаке плазмы, но, спустя 23 секунды он замолчал, и в районе падения его не смогли найти. Несмотря на отсутствие полностью удачных испытаний, НПО им. Лавочкина и НИЦ имени Бабакина возлагают большие надежды на концепт. На противоположном берегу океана, в NASA, существуют аналогичные проекты LOTFID и HIAD-2.

Космические сверхзвуковые парашюты - 10
Разгонный блок “Фрегат” с “воланом”, иллюстрация НИЦ имени Г.Н. Бабакина

Вызов 2020

В 2020 году на Марс отправится не только ровер NASA, но и посадочный российско-европейский модуль “Экзомарс”, в который будут входить ровер “Розалинд Франклин” и платформа “Казачок”. Интересной особенностью посадочной платформы, 80% которой делает НПО им. Лавочкина, являются два парашюта. Сначала раскроется сверхзвуковой привычного типа DGB, затем, когда скорость станет дозвуковой, раскроется второй, круглощелевой, парашют диаметром 35 метров, самый большой в истории изучения Марса.

Космические сверхзвуковые парашюты - 11
Изображение ESA

По последним новостям, во время недавнего испытания на обоих парашютах появились разрывы. Их не хватило, чтобы сделать недостаточным тормозное усилие, но проблему, конечно же, надо исправить. К счастью, время на это еще есть — “Экзомарс-2020” полетит в июне 2020.

Заключение

Парашюты остаются эффективными главным образом благодаря небольшой массе. И даже если начнет успешно садиться на Марс корабль Starship от SpaceX, для которого при посадке предлагается использовать крылья и двигатели, беспилотные зонды еще долго будут использовать отработанные технологии — сверхзвуковой парашют плюс торможение со сравнительно небольшой скорости выгоднее по массе, чем торможение исключительно на двигателях со сверхзвука.

Материал подготовлен для портала N+1, публикуется в авторской редакции.

Автор: lozga

Источник


* - обязательные к заполнению поля


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js