Рубрика «искусственный интеллект»

Внедрение искусственного интеллекта в различные рабочие процессы заметно меняет рынок труда. Многие профессии постепенно исчезают, некоторые адаптируются под текущие условия, также появляются и новые специальности.

Как искусственный интеллект меняет рынок труда - 1
Читать полностью »

GPT-3 сегодня у всех на слуху — новейшая и самая большая языковая модель от OpenAI, обученная на терабайтах текстов из интернета. А если вы всё проспали, то вот подборка крутых демок от счастливчиков, получивших ранний бета-доступ к API.

К сожалению, у меня нет заветных API ключей — но я нашел обходной путь. Существует увлекательная игра AI Dungeon, позволяющая получить непрямой доступ к GPT-3 в виде текстового квеста (за небольшую плату), чем мы и воспользуемся сегодня. Уж не знаю, полная ли там модель, или же это fine-tuned версия, дообученная на сценариях текстовых RPG игр, но и она внезапно оказалась хороша в кодинге — да так, что даже заставляет слегка понервничать ;)

Для проведения эксперимента я запустил игру с «custom» пресетом и выставил параметр «Randomness» около минимума (на 0.2), чтобы избежать чрезмерного разгула фантазии «собеседуемого». Поехали.
Читать полностью »

Захожу я сегодня на Хабр, и, под чашку чая, пролистываю статью «GPT-3 от OpenAI может стать величайшей вещью со времён Bitcoin».

Если не читали – почитайте. Конец вызывает прямо-таки сильные эмоции. У меня они усугубились тем, что я относительно профессионально занимаюсь ИИ, генерацией текстов и проблемой смыслов – так что я небезосновательно считал, что легко распознаю текст, сгенерированный машиной…
Читать полностью »

Резюме: Я делюсь своими ранними экспериментами с бета-версией новой модели прогнозирования языка OpenAI (GPT-3). Я объясняю своё мнение, что GPT-3 обладает революционным потенциалом, сравнимым с блокчейн-технологией.

GPT-3 от OpenAI может стать величайшей вещью со времён Bitcoin - 1

Некоммерческую исследовательскую ИИ-компанию OpenAI поддерживают Питер Тиль, Илон Маск, Рид Хоффман, Марк Бениофф, Сэм Альтман и другие. Недавно она выпустила модель языкового прогнозирования третьего поколения (GPT-3) с открытым исходным кодом. Языковые модели позволяют компьютерам создавать случайные предложения приблизительно той же длины и грамматической структуры, что и заданные в качестве образца.

В моих ранних экспериментах с GPT-3 я обнаружил, что предсказанные предложения GPT-3, опубликованные на форуме bitcointalk.org, привлекли много положительного внимания со стороны форумчан, включая предположения о том, что автор должен быть умным (и/или саркастичным) и что в его сообщениях есть тонкие паттерны. Полагаю, аналогичные результаты можно получить, опубликовав выдачу GPT-3 на других форумах, в блогах и социальных сетях.
Читать полностью »

В этом переводе презентации британского математика Кевина Баззарда мы увидим, что следующий комикс xkcd безнадежно устарел.

image

Каково будущее математики?

  • В 1990-х компьютеры стали играть в шахматы лучше людей.
  • В 2018 компьютеры стали играть в го лучше людей.
  • В 2019 исследователь искусственного интеллекта Christian Szegedy сказал мне, что через 10 лет компьютеры будут доказывать теоремы лучше, чем люди.

Конечно, он может быть не прав. А может быть и прав.
Читать полностью »

Не каждый может найти время и деньги на то, чтобы получить очное образование в сферах Data Science (DS, наука о данных), AI (Artificial Intelligence, искусственный интеллект), ML (Machine Learning, машинное обучение). Недостаток времени и нехватка денег — это серьёзные препятствия. Преодолеть эти препятствия можно, занявшись самообучением. Но и тут не всё так просто. Для того чтобы успешно учиться самостоятельно, нужны дисциплина, сосредоточенность и правильный подбор учебных предметов. Самообучение в выбранной области, при правильном подходе, можно свободно совмещать с обычной жизнью или с учёбой в общеобразовательных учреждениях. Но в некоторых областях знаний, в таких, как DS, AI, ML, очень сложно начать учиться самостоятельно. Однако, прошу поверить мне на слово, сложности стоят того, что можно получить в результате. Ключ к успеху в самообучении лежит в том, чтобы учиться в собственном темпе.

Наука о данных, искусственный интеллект, машинное обучение: путь самоучки - 1

В этом материале я хочу рассказать о том, как можно действовать тому, кто хочет самостоятельно обрести знания в областях DS, AI и ML. Применение предложенных здесь методов учёбы способно привести к хорошему прогрессу в изучении нового. Здесь, кроме того, я собираюсь поделиться ссылками на ресурсы, которыми я пользуюсь, и которые я без тени сомнения готов порекомендовать другим.
Читать полностью »

Ложбан — искусственный человеческий язык, созданный на основе Логланга в 1987 году Группой логического языка (The Logical Language Group). Лицензионно-открыт и свободен. Основан на логике предикатов. Имеет описание в формате YACC и EBNF.

Алфавит

a, b, d, f, g, i, k, l, m, n, o, p, r, t, v, z — читается как в английском
h, w, q — нет в алфавите
e — читается как русская Э
c — читается как русская Ш. Но ci — произносится как «щи».
х — читается как русская Х (!)
j — читается как русская Ж
tc — читается как русская Ч
y — это шва и произноситься как безударная Ы. Например cy — произноситься как «шы».
' — просто разделитель наподобие наших Ь, Ъ знаков (в транскрипции заменяется на h).
. — пауза в произношении.

Числительные

0 — no, 1 — pa, 2 — re, 3 — ci, 4 — vo, 5 — mu, 6 — ха, 7 — ze, 8 — bi, 9 — so
pi — десятичная точка

Например:
pa re ci pi vo mu — 123,45
pa no no — 100

Читать полностью »

Данная статья посвящается объяснению устройства архитектуры нейронной сети RetinaNet. Обзор был проведён мною в ходе выполнения дипломной работы, а так как для его написания потребовалось обращаться исключительно к англоязычным источникам и собрать найденную информацию воедино, я решил, что полученный материал поможет кому-то сократить время на поиск нужной информации и упростить понимание устройства нейросетей для задачи Object Detection.

Введение

Архитектура свёрточной нейронной сети (СНС) RetinaNet состоит из 4 основных частей, каждая из которых имеет своё назначение:

a) Backbone – основная (базовая) сеть, служащая для извлечения признаков из поступающего на вход изображения. Данная часть сети является вариативной и в её основу могут входить классификационные нейросети, такие как ResNet, VGG, EfficientNet и другие;

b) Feature Pyramid Net (FPN) – свёрточная нейронная сеть, построенная в виде пирамиды, служащая для объединения достоинств карт признаков нижних и верхних уровней сети, первые имеют высокое разрешение, но низкую семантическую, обобщающую способность; вторые — наоборот;

c) Classification Subnet – подсеть, извлекающая из FPN информацию о классах объектов, решая задачу классификации;

d) Regression Subnet – подсеть, извлекающая из FPN информацию о координатах объектов на изображении, решая задачу регрессии.

На рис. 1 изображена архитектура RetinaNet c ResNet нейросетью в качестве backbone.

Архитектура нейронной сети RetinaNet - 1
Рисунок 1 – Архитектура RetinaNet с backbone-сетью ResNet

Разберём подробно каждую из частей RetinaNet, представленных на рис. 1.
Читать полностью »

Мудрость является не продуктом обучения, а пожизненной попыткой ее приобрести.

Альберт Эйнштейн

Каждому, кто серьёзно занимается машинным обучением, необходимо научиться понимать то, что публикуется в научных статьях. Подобные публикации делают учёные, находящиеся на переднем крае исследований в соответствующих областях. Это — искусственный интеллект (AI, Artificial Intelligence), машинное обучение (ML, Machine Learning), глубокое обучение (DL, Deep Learning) и многие другие сферы.

Учимся читать научные статьи у Эндрю Ына из Стэнфорда - 1

Для того чтобы оставаться в курсе последних открытий и расширять собственные знания, нужно обладать научным складом мышления и соответствующими привычками. Технологии AI, ML и DL развиваются с невероятной скоростью. Поэтому нам нужно, чтобы не отставать от прогресса, запастись соответствующими знаниями. Эти знания можно получить только в ходе работы с научными публикациями.

Здесь вы найдёте руководство по эффективной работе с научными статьями. В частности, мы остановимся на следующих темах:

  • Систематический подход к чтению подборок публикаций для получения знаний в интересующей вас области.
  • Правила чтения научных статей.
  • Полезные интернет-ресурсы, которые могут помочь вам в поиске публикаций и важнейшей информации.

Читать полностью »

В социальном сервисе «Аура» появится функция анализа первого сообщения с запросом на чат. Чтобы можно было начать переписываться с пользователем в «Ауре», он должен одобрить запрос, прочитав приветственное сообщение. Сейчас на специальной странице «Как дела» можно проверить потенциальное первое сообщение на вероятность принятия запроса.

Мы обучили модель машинного обучения на основе анонимных данных видаЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js