Рубрика «python»

Отчет с PyDaCon meetup в Mail.ru Group, 22 июня - 1

В конце июня, в московском офисе прошел митап на котором собрали 2 секции: доклады по Python, состав которого был сформирован на основе общего списка докладов к PyCon Russia и PyData-трек от PyData Moscow meetup. Под катом собрали презентации, записи докладов и небольшие комментарии.
Читать полностью »

Привет, читатель.

По стопам моего первого поста подборки датасетов для машинного обучения — сделаю подборку относительно свежих датасетов с рабочими примерами по обработке данных. Ведь ни для кого не секрет, что обучение на хороших примерах проходит эффективнее и быстрее. Посмотрим, что интересного нам смогут показать одни из лучших примеров по обработке данных.

Схема работы с текущим постом унаследуется от моего поста про лучшие блокноты по ML и DS, а именно — сохранил в закладки → передал коллеге.

+ бонус в конце статьи — крутой курс от ФПМИ МФТИ.

image

Итак, давайте приступим.

Подборка датасетов с рабочими примерами обработки данных:

Suicide Rates Overview 1985 to 2016 — сравнение социально-экономической информации с показателями самоубийств по годам и странам.

Примеры обработки:

Читать полностью »

Относительно недавно, в этом, 2019 году, NVIDIA анонсировала одноплатный компьютер совместимого с Raspberry Pi форм-фактора, ориентированный на AI и ресурсоемкие расчеты.

NVIDIA Jetson Nano: тесты и первые впечатления - 1

После его появления в продаже, стало интересно посмотреть, как это работает и что на нем можно делать. Стандартные бенчмарки использовать не так интересно, так что придумаем свои, для всех тестов в тексте приведены исходники. Для тех, кому интересно что получилось, продолжение под катом.
Читать полностью »

Развивая тему конспектов по магистерской специальности "Communication and Signal Processing" (TU Ilmenau), продолжить хотелось бы одной из основных тем курса "Adaptive and Array Signal Processing". А именно основами адаптивной фильтрации.

Для кого в первую очередь была написана эта статья:

1) для студенческой братии родной специальности;
2) для преподавателей, которые готовят практические семинары, но ещё не определились с инструментарием — ниже будут примеры на python и Matlab/Octave;
3) для всех, кто интересуется темой фильтрации.

Что можно найти под катом:

1) сведения из теории, которые я постарался оформить максимально сжато, но, как мне кажется, информативно;
2) примеры применения фильтров: в частности, в рамках эквалайзера для антенной решетки;
3) ссылки на базисную литературу и открытые библиотеки (на python), которые могут быть полезны для исследований.

В общем, добро пожаловать и давайте разбирать всё по пунктам.

Оптимальная линейная фильтрация: от метода градиентного спуска до адаптивных фильтров - 1

Читать полностью »

Хотите узнать о трех методах получения данных для своего следующего проекта по ML? Тогда читайте перевод статьи Rebecca Vickery, опубликованной в блоге Towards Data Science на сайте Medium! Она будет интересна начинающим специалистам.

Извлечение данных при машинном обучении - 1

Получение качественных данных — это первый и наиболее важный шаг в любом проекте по машинному обучению. Специалисты Data Science часто применяют различные методы получения датасетов. Они могут использовать общедоступные данные, а также данные, доступные по API или получаемые из различных баз данных, но чаще всего комбинируют перечисленные методы.

Цель этой статьи — представить краткий обзор трех разных методов извлечения данных с использованием языка Python. Я расскажу, как делать это с помощью Jupyter Notebook. В своей предыдущей статье я писала о применении некоторых команд, запускаемых в терминале.Читать полностью »

Вместо тысячи слов...

Безумный конвертер GIF'ок в анимированные стикеры для Telegram - 1

xZibit тоже рад, ведь здесь GIF вставлены в стикеры, чтобы быть вставлеными в GIF для КДПВ!

А теперь о подробностях реализации.
Читать полностью »

Kubernetes Operator на Python без фреймворков и SDK - 1

Go на данный момент является монополистом среди языков программирования, которые люди выбирают для написания операторов для Kubernetes. Тому есть такие объективные причины, как:

  1. Существует мощнейший фреймворк для разработки операторов на Go — Operator SDK.
  2. На Go написаны такие «перевернувшие игру» приложения, как Docker и Kubernetes. Писать свой оператор на Go — говорить с экосистемой на одном языке.
  3. Высокая производительность приложений на Go и простые инструменты для работы с concurrency «из коробки».

NB: Кстати, как написать свой оператор на Go, мы уже описывали в одном из наших переводов зарубежных авторов.

Но что, если изучать Go вам мешает отсутствие времени или, банально, мотивации? В статье приведен пример того, как можно написать добротный оператор, используя один из самых популярных языков, который знает практически каждый DevOps-инженер, — Python.Читать полностью »

Всем привет!

Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.

Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.

Курс лекций «Основы цифровой обработки сигналов» - 1
Читать полностью »

Здравствуйте! Меня зовут Максим Газизов. Ранее я публиковал пост на Хабре о своих успехах и ошибках в геймдеве. И затем, спустя год работы над своим детищем под названием Wasteland Wars, я пропал из эфира. Всё потому, что меня настолько затянул процесс, как никогда раньше. Кстати, так вышло, что я потерял свой прежний аккаунт и вот создал новый.

Wasteland Wars
Читать полностью »

Привет, читатель.

Представляю пост который идёт строго (!) в закладки и передаётся коллегам. Он с подборкой примечательных файлов формата Jupyter Notebook по Machine Learning, Data Science и другим сферам, связанным с анализом данных. Эти блокноты Jupyter, будут наиболее полезны специалистам по анализу данных — как обучающимся новичкам, так и практикующим профи.

image

Итак, приступим.

Вводные курсы в Jupyter Notebook

Читать полностью »