Рубрика «теория вероятностей»

Квантовая теория является одной из самых точных моделей, описывающих окружающий нас мир, а технические решения, разработанные благодаря применению аппарата квантовой механики, прочно вошли в повседневную жизнь современного общества. И тем удивительнее, что понимание даже базовых концепций этой сферы знаний вступает в серьезные противоречия с интуицией, не только людей далеких от науки, но и самих исследователей, подтверждением чему является большое количество различных интерпретаций. В этой статье, предлагаю рассмотреть основные понятия квантовой теории с показавшейся автору наиболее интуитивно-понятной точки зрения, несколько модифицированной теории вероятностей.

image Что будет, если по аналогии с двущелевым опытом, все пространство на пути частицы до экрана будет заполнено щелями?

Читать полностью »

Дисклеймер: данная статья является адаптированным переводом. Оригинал можно прочесть здесь.

Байесовские сети при помощи Питона — объяснение с примерами

Из-за ограниченности информации (особенно на родном русском) и ресурсов работы, байесовские сети окружены рядом проблем. И можно было бы спать спокойно, если бы их реализация не осуществлялась в большинстве передовых технологий эры, таких как искусственный интеллект и машинное обучение.

Основываясь на данном факте, эта статья полностью посвящена работе Байесовских сетей и тому, как они сами могут не формировать проблемы, а применяться в их решении, даже если решаемые проблемы крайне запутаны.
Читать полностью »

Визуальная теория информации (часть 2) - 1

Вторая часть перевода лонгрида посвященного визуализации концепций из теории информации. Во второй части рассматриваются энтропия, перекрестная энтропия, дивергенция Кульбака-Лейблера, взаимная информация и дробные биты. Все концепции снабжены прекрасными визуальными объяснениями.

Для полноты восприятия, перед чтением второй части, рекомендую ознакомиться с первой.

Читать полностью »

Визуальная теория информации (часть 1) - 1

Перевод интересного лонгрида посвященного визуализации концепций из теории информации. В первой части мы посмотрим как отобразить графически вероятностные распределения, их взаимодействие и условные вероятности. Далее разберемся с кодами фиксированной и переменной длины, посмотрим как строится оптимальный код и почему он такой. В качестве дополнения визуально разбирается статистический парадокс Симпсона.

Теория информации дает нам точный язык для описания многих вещей. Сколько во мне неопределенности? Как много знание ответа на вопрос А говорит мне об ответе на вопрос Б? Насколько похож один набор убеждений на другой? У меня были неформальные версии этих идей, когда я был маленьким ребенком, но теория информации кристаллизует их в точные, сильные идеи. Эти идеи имеют огромное разнообразие применений, от сжатия данных до квантовой физики, машинного обучения и обширных областей между ними.

К сожалению, теория информации может казаться пугающей. Я не думаю, что есть какая-то причина для этого. Фактически, многие ключевые идеи могут быть объяснены визуально!

Читать полностью »

Привет! Представляю вашему вниманию перевод статьи «The Surprisingly Solid Mathematical Case of the Tin Foil Hat Gun Prepper» автора BJ Campbell.

«Всего лишь девять приемов пищи отделяют человечество от анархии», – Альфред Генри Льюис, 1906 год.

Гидрология и математика редких событий, или Неоспоримый аргумент в пользу выживальщиков - 1
Читать полностью »

Конспект по «Машинному обучению». Теория вероятностей. Формула Байеса - 1

Теория вероятностей. Формула Байеса

Пусть проводится некоторый эксперимент.

$w_1, ..., w_N$элементарные события (элементарные исходы эксперимента).
$Omega={w_i}_{i=1}^N$пространство элементарных событий (совокупность всевозможных элементарных исходов эксперимента).
Читать полностью »

Вопреки правилам пользования метрополитеном, желая сэкономить время, каждый из нас хотя бы раз в жизни бежал вниз по эскалатору. На первый взгляд кажется, что это абсолютно логично и правильно: хочешь быстрее уехать – постарайся оказаться на платформе как можно раньше. Однако, практически сразу в голову приходит следующий сценарий: вы сломя голову летите по эскалатору вниз, спускаетесь на платформу, а двери вагона закрываются прямо перед вашим носом. Пока вы ждёте следующий поезд – люди, которые вставали на эскалатор одновременно с вами, успевают стоя на месте спокойно спуститься и сесть в следующий поезд. В таком случае – выигрыша никакого. Так насколько же рационально бежать по эскалатору вниз и стоит ли заниматься этим вообще? Спешу вас обрадовать – ответ найден! Ниже представлено математическое обоснование нецелесообразности (да, именно НЕ) бежать вниз по эскалатору в метро.
Читать полностью »

Вместо введения

В статье описывается исследование, проведенное с целью проверки утверждения центральной предельной теоремы о том, что сумма N независимых и одинаково распределенных случайных величин, отобранных практически из любого распределения, имеет распределение, близкое к нормальному. Однако, прежде чем мы перейдем к описанию исследования и более подробному раскрытию смысла центральной предельной теоремы, не лишним будет сообщить, зачем вообще проводилось исследование и кому может быть полезна статья.

В первую очередь, статья может быть полезна всем начинающим постигать основы машинного обучения, в особенности если уважаемый читатель еще и на первом курсе специализации «Машинное обучение и анализ данных». Именно подобного рода исследование требуется провести на заключительной неделе первого курса, указанной выше специализации, чтобы получить заветный сертификат.
Читать полностью »

Совершая очередную транзакцию в моем любимом банке Тинькофф, получил уже привычное сообщение:

Никому не говорите код: 3131! Перевод с карты ****. Сумма ***.00 RUB

Если будут спрашивать — я вам его не говорил.

И снова взгляд зацепился за интересное совпадение цифр в «случайном» одноразовом коде (вспомнился Нео с чёрной кошкой). В итоге решил поднять всю историю сообщений, чтобы посмотреть, насколько случаен «случайный» одноразовый код и чем это может грозить.

Читать полностью »

Как жульничать при игре в кости – советы игрового эксперта - 1

Недавно археологи раскопали игровой кубик 600-летнего возраста, который, вероятно, использовался для жульничества. На гранях деревянного кубика из средневековой Норвегии находились две пятёрки, две четвёрки, тройка и шестерка – а единички и двойки не было. Считается, что этот кубик использовался для обмана при игре в кости, а не в какой-то особой игре, в которой нужны были определённые комбинации чисел.

Сегодня подобные кубики известны, как «верхи и низы» [tops and bottoms]. Они полезны для нечестной игры, если вы склонны к подобным действиям, хотя не гарантируют постоянного выигрыша, и не выдерживают тщательного осмотра со стороны подозрительных соперников (им стоит только попросить рассмотреть кубик – и вас раскроют). Но при игре в кости есть несколько других вариантов жульничества, о некоторых из которых я вам расскажу.

Стоит отметить, что эти методы запрещено использовать в казино, и я не рекомендую вам использовать их в подобных заведениях – это лишь интересный метод изучения вероятностей.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js