Рубрика «Процессоры»

Intel просит $5500 за прибавку в 300 МГц - 1

Кроме официального прайс-листа, у Intel есть десятки специальных серверных процессоров “off roadmap”, доступных только для избранных клиентов со специфическими запросами. Недавно издание ComputerBase нашло информацию о самом быстром серверном чипе Xeon Platinum 8284, который вышел во II кв. 2019 года.

Самое интересное, что этот 28-ядерный процессор работает всего на 300 МГц быстрее, чем «официальный» Xeon Platinum 8280, но при этом стоит значительно дороже. Разница составляет $5500. Кроме тактовой частоты и TDP, они ничем не отличаются.
Читать полностью »

Intel Pohoiki Beach — нейроморфная система с 8 млн нейронов - 1

Анонсированный два года назад нейроморфный процессор Intel Loihi все это время был вещью в себе — существующей в природе, но мало кому доступной. Теперь дело принимает несколько иной оборот: представленная на этой неделе платформа Pohoiki Beach на базе Loihi не только придает чипу пригодный для практического использования форм-фактор, но и выводит его в исследовательские массы. Пока, правда, речь идет только об участниках специальной академической программы Intel, однако линейка нейроморфных вычислительных систем, как и заинтересованная аудитория, будет расширяться.
Читать полностью »

Давным-давно, когда компьютеры были большими, а бизнес скучным, произошло нечто неожиданное. Молодые хакеры нашли способ собрать персональные компьютеры на дешёвых микропроцессорах от телетайпов и светофоров. Одним из них был Стив Возняк. Эти ребята восприняли ограничения своих компьютеров как вызов, сели и заставили эти крошечные чипы делать удивительные вещи. Вот что публиковал Dr Dobb's Journal в августе 1976 года:

Я нашёл отличного программиста по имени Стив Возняк - 1

Это набор арифметических процедур на действительных числах. Микропроцессор (6502, такой же, как в Apple I и II) мог работать только с байтами, то есть целыми числами между 0 и 255. Хуже того, он мог только складывать и вычитать их. Но с помощью этой библиотеки вы можете вычислить $1.2627-1099.56$, или даже взять квадратный корень из пи. Удивительно, но автор программы по имени Стив Возняк уместил основные функции (сложение, вычитание, умножение и деление) в 239 байт, используя всего 127 инструкций.
Читать полностью »

image

Несмотря на постоянные усовершенствования и постепенный прогресс в каждом новом поколении, в индустрии процессоров уже долгое время не происходит фундаментальных изменений. Огромным шагом вперёд стал переход от вакуума к транзисторам, а также переход от отдельных компонентов к интегральным схемам. Однако после них серьёзных сдвигов парадигмы такого же масштаба не происходило.

Да, транзисторы стали меньше, чипы — быстрее, а производительность повысилась в сотни раз, но мы начинаем наблюдать стагнацию…

Это четвёртая и последняя часть серии статей о разработке ЦП, рассказывающей о проектировании и изготовлении процессоров. Начав с высокого уровня, мы узнали о том, как компьютерный код компилируется в язык ассемблера, а затем в двоичные инструкции, которые интерпретирует ЦП. Мы обсудили то, как проектируется архитектура процессоров и они обрабатывают инструкции. Затем мы рассмотрели различные структуры, из которых составлен процессор.

Немного углубившись в эту тему, мы увидели, как создаются эти структуры, и как внутри процессора совместно работают миллиарды транзисторов. Мы рассмотрели процесс физического изготовления процессоров из необработанного кремния. Узнали о свойствах полупроводников и о том, как выглядят внутренности чипа. Если вы пропустили какую-то из тем, то вот список статей серии:

Часть 1: Основы архитектуры компьютеров (архитектуры наборов команд, кэширование, конвейеры, hyperthreading)
Часть 2: Процесс проектирования ЦП (электрические схемы, транзисторы, логические элементы, синхронизация)
Часть 3: Компонование и физическое производство чипа (VLSI и изготовление кремния)
Часть 4: Современные тенденции и важные будущие направления в архитектуре компьютеров (море ускорителей, трёхмерное интегрирование, FPGA, Near Memory Computing)
Читать полностью »

Samsung и TSMC переходят на технологический процесс 5 нм

Два крупнейших производителя — Taiwan Semiconductor Manufacturing Co. (TSMC) и Samsung в апреле анонсировали о восходе на следующую ступеньку лестницы закона Мура. Сначала выступила TSMC, объявив о переходе техпроцесса 5 нм в стадию «рискованного производства» – то есть, компания считает, что процесс готов, и первые клиенты рискуют, надеясь, что продукт заработает в их схемах. Samsung быстро последовала за нею с аналогичным заявлением.

TSMC говорит, что процесс 5 нм даёт увеличение скорости на 15% или увеличение эффективности энергопотребления на 30%. Samsung обещает ускорение на 10% и увеличение эффективности на 20%. Аналитики говорят, что эти цифры находятся в рамках ожиданий. Однако по сравнению с иногда 50% улучшениями, случавшимися лет 10 назад, ясно, что закон Мура уже не тот, что раньше. Но, судя по инвестициям крупных производителей, клиенты считают, что оно того стоит.
Читать полностью »

Samsung и AMD начали совместный проект в области архитектур GPU. Разберемся, какие есть предпосылки для этого партнерства и обсудим другие компании, работающие в этой сфере.

Почему два крупнейших производителя электроники объединили силы в новом GPU-проекте - 1Читать полностью »

image

Это третья статья из серии о проектировании ЦП. В первой статье мы рассмотрели архитектуру компьютера и объяснили его работу на высоком уровне. Во второй статье говорилось о проектировании и реализации некоторых компонентов чипа. В третьей части мы узнаем, как архитектурные проекты и электрические схемы становятся физическими чипами.

Как превратить кучу песка в современный процессор? Давайте разберёмся.

Часть 1: Основы архитектуры компьютеров (архитектуры наборов команд, кэширование, конвейеры, hyperthreading)
Часть 2: Процесс проектирования ЦП (электрические схемы, транзисторы, логические элементы, синхронизация)
Часть 3: Компонование и физическое производство чипа (VLSI и изготовление кремния)
Часть 4: Современные тенденции и важные будущие направления в архитектуре компьютеров (море ускорителей, трёхмерное интегрирование, FPGA, Near Memory Computing)

Как говорилось ранее, процессоры и вся другая цифровая логика составлены из транзисторов. Транзистор — это переключатель с электрическим управлением, который может включаться и отключаться подачей или отключением напряжения на затворе. Мы сказали, что существует два вида транзисторов: nMOS-устройства пропускают ток, когда затвор включён, а pMOS-устройства пропускают ток при выключенном затворе. Базовая структура процессора — это транзисторы, созданные из кремния. Кремний — это полупроводник, потому что он занимает промежуточное положение — не проводит ток полностью, но и не является изолятором.

Чтобы превратить кремниевую пластину в практическую электрическую схему добавлением транзисторов, производственные инженеры используют процесс под названием "легирование". Легирование — это процесс добавления в базовый субстрат кремния тщательно выбранных примесей для изменения его проводимости. Цель заключается в том, чтобы изменить поведение электронов так, чтобы мы могли ими управлять. Существует два вида транзисторов, а значит, и два основных вида легирования.
Читать полностью »

Intel снижает цены на 10−15% перед выходом AMD Ryzen 3000 - 1
Даже младший процессор Ryzen 5 3600 стоимостью $199 (на фото) сравним по производительности с Intel Core i9-9900K

Intel снижает цены на процессоры для настольных ПК на 10−15% в преддверии выхода чипов AMD Ryzen 3000, сообщает издание DigiTimes со ссылкой на источник в компании-производителе материнских плат (статья в платном доступе).

Цены снижаются на процессоры Intel Core i9-9900K, i7-9700K и i5-9600K, скидка составит от $25 до $75, что составляет примерно 10−15% стоимости CPU. К примеру, флагманский восьмиядерный Core i9-9900K после снижения будет стоить 425-450 долларов, а Core i7-9700K — 320-340 долларов.

Об этом уже проинформированы партнёры Intel, производители компьютеров и материнских плат.
Читать полностью »

image

Теперь, когда мы знаем, как работают процессоры на высоком уровне, настало время углубиться в разбор процесса проектирования их внутренних компонентов. Это вторая статья из серии, посвящённой разработке процессоров. Рекомендую изучить для начала первую часть, чтобы вы понимать изложенные ниже концепции.

Часть 1: Основы архитектуры компьютеров (архитектуры наборов команд, кэширование, конвейеры, hyperthreading)
Часть 2: Процесс проектирования ЦП (электрические схемы, транзисторы, логические элементы, синхронизация)
Часть 3: Компонование и физическое производство чипа (VLSI и изготовление кремния)
Часть 4: Современные тенденции и важные будущие направления в архитектуре компьютеров (море ускорителей, трёхмерное интегрирование, FPGA, Near Memory Computing)

Как вы возможно знаете, процессоры и большинство других цифровых устройств состоят из транзисторов. Проще всего воспринимать транзистор как управляемый переключатель с тремя контактами. Когда затвор включён, электрический ток может течь по транзистору. Когда затвор отключён, ток течь не может. Затвор похож на выключатель света в комнате, только он гораздо меньше, быстрее и может управляться электрически.

Существует два основных типа транзисторов, используемых в современных процессорах: pMOS (PМОП) и nMOS (NМОП). nMOS-транзистор пропускает ток, когда затвор (gate) заряжен или имеет высокое напряжение, а pMOS-транзистор пропускает ток, когда затвор разряжен или имеет низкое напряжение. Сочетая эти типы транзисторов комплементарным образом, мы можем создавать логические элементы КМОП (CMOS). В этой статье мы не будем подробно разбирать особенности работы транзисторов, но коснёмся этого в третьей части серии.
Читать полностью »

Доброго времени суток.

Довольно давно имелось желание написать эмулятор какого-нибудь процессора.
А что может быть лучше, чем изобрести велосипед?

Имя велосипеду — V16, от склеивания слова Virtual и, собственно, разрядности.

Пишем никому не нужный эмулятор - 1

Читать полностью »