Рубрика «machine learning»

Комментарий переводчика, или никто никого не обучает - 1

Читать полностью »

Представлюсь

Всем привет! Меня зовут Влад Виноградов, я руководитель отдела компьютерного зрения в компании EORA.AI. Мы занимаемся глубоким обучением уже более трех лет и за это время реализовали множество проектов для российских и международных клиентов в которые входила исследовательская часть и обучение моделей. В последнее время мы фокусируемся на решении задач поиска похожих изображений и на текущий момент создали системы поиска по логотипам, чертежам, мебели, одежде и другим товарам.

Эта публикация предназначена для Machine Learning инженеров и написана по мотивам моего выступления Читать полностью »

Видеоаналитика «М.Видео-Эльдорадо»: 30 000 камер, 1 компьютер и нейросеть - 1

В середине 2020 года мы в «М.Видео-Эльдорадо» начали строить собственную систему видеоаналитики «с нуля», не используя сторонние готовые платформы. В перспективе она должна охватить более тысячи магазинов торговой сети. О том, почему мы выбрали этот путь и каких результатов добились, читайте в сегодняшней статье.Читать полностью »

10 полезных расширений для дата-сайентистов - 1


Каждый специалист по Data Science тратит большую часть своего времени на визуализацию данных, их предварительную обработку и настройку модели на основе полученных результатов. Для каждого исследователя данных именно эти моменты – самая сложная часть процесса, поскольку хорошую модель можно получить при условии, что вы точно выполните все эти три шага. И вот 10 очень полезных расширений Jupyter Notebook, которые помогут вам выполнить эти шаги.

Читать полностью »

Ранее у нас в блоге уже был материал про лучших в Kaggle, а сегодня представляю вам интервью с признанным дата-сайентистом и гроссмейстером Kaggle Филиппом Сингером, который поделится своим опытом, вдохновением и и достижениями. Беседа призвана мотивировать и воодушевить других людей, которые хотят понять, что нужно, чтобы стать гроссмейстером Kaggle. Также в этом интервью мы узнаем больше об академическом прошлом Филиппа, его увлечении Kaggle и о его работе в качестве дата-сайентиста.

Дата-сайентист, который просто не может перестать выигрывать на Kaggle - 1

Читать полностью »

Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом. Например:

  • Модель ML тестируется на различных наборах данных. Вы можете перетащить файлы CSV в модель и отрисовать кривую AUS/ROC. Здесь GUI проявит себя прекрасно, правда?
  • Построить случайную переменную или статистическое распределение в заданном диапазоне и динамически управлять параметрами с помощью графического интерфейса.
  • Быстро запустить некоторые задачи обработки или предварительной обработки данных в наборе с помощью GUI вместо того, чтобы писать кучу кода.

В этой статье мы покажем, как создать такой графический интерфейс, потратив минимум усилий на изучение библиотеки Python.

Как сделать Data Science приложение для Windows (и не только) с графическим интерфейсом с помощью PySimpleGUI - 1


Читать полностью »

Взлёт искусственного интеллекта привёл к популярности платформ машинного обучения MLaaS. Если ваша компания не собирается строить фреймворк и развёртывать свои собственные модели, есть шанс, что она использует некоторые платформы MLaaS, например H2O или KNIME. Многие исследователи данных, которые хотят сэкономить время, пользуются этими инструментами, чтобы быстро прототипировать и тестировать модели, а позже решают, будут ли их модели работать дальше. 

Но не бойтесь всей этой инфраструктуры; чтобы понять эту статью, достаточно минимума знаний языка Python и фреймворка Django.  Специально к старту нового потока курса по машинному обучению в этом посте покажем, как быстро создать собственную платформу ML, способную запускать самые популярные алгоритмы на лету.

Разрабатываем и развёртываем собственную платформу ИИ с Python и Django - 1


Портрет Орнеллы Мути Джозефа Айерле (фрагмент), рассчитанный с помощью технологии искусственного интеллекта.
Читать полностью »

image

Всем привет! Пока киберпанк еще не настолько вошел в нашу жизнь, и нейроинтерфейсы далеки от идеала, первым этапом на пути к будущему манипуляторов могут стать LiDAR. Поэтому, чтобы не скучать на праздниках, я решил немного пофантазировать на тему средств управления компьютером и, предположительно, любым устройством, вплоть до экскаватора, космического корабля, дрона или кухонной плиты.
Читать полностью »

Во время изучения различных алгоритмов машинного обучения я наткнулся на ландшафт потерь нейронных сетей с их горными территориями, хребтами и долинами. Эти ландшафты потерь сильно отличались от выпуклых и гладких ландшафтов потерь, с которыми я столкнулся при использовании линейной и логистической регрессий. Здесь мы создадим ландшафты потерь нейронных сетей и анимированного градиентного спуска с помощью датасета MNIST.

Анимации градиентного спуска и ландшафта потерь нейронных сетей на Python - 1


Рисунок 1 — Ландшафт потерь свёрточной нейронной сети с 56 слоями (VGG-56, источник)
Читать полностью »

Алгоритмы по детекции лиц плотно вошли в нашу жизнь, хотя и не все это замечают. Началось всё в 2015 году со сферы развлечений. Стартап Looksery, занимающийся разработкой AR-фильтров, был куплен Snapchat. Приложение распознавало лицо человека на фотографии и накладывало на него весёлые рожицы. Чуть позже, в начале 2016 года, Facebook купил белорусский стартап MSQRD и запустил маски в Facebook Stories. Но это можно считать только обкаткой таких технологий.

В этой статье можно прочитать, как используются системы идентификации, узнать про слабые места компьютерных алгоритмов, а также попробовать запустить нейронную сеть по детекции и идентификации лиц на собственном компьютере.

Нейросети в большом городе. Разбираемся, как они помогают идентифицировать людей, и запускаем собственную нейросеть - 1


Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js