Рубрика «machine learning»

MLOps — Cook book, chapter 1 - 1

Всем привет! Я CV-разработчик в КРОК. Уже 3 года мы реализуем проекты в области CV. За это время чего мы только не делали, например: мониторили водителей, чтобы во время движения они не пили, не курили, по телефону не разговаривали, смотрели на дорогу, а не сны или в облака; фиксировали любителей ездить по выделенным полосам и занимать несколько мест на парковке; следили за тем, чтобы работники носили каски, перчатки и т.п.; идентифицировали сотрудника, который хочет пройти на объект; подсчитывали всё, что только можно.

Я все это к чему?

В процессе реализации проектов мы набили шишки, много шишек, с частью проблем вы или знакомы, или познакомитесь в будущем.

Моделируем ситуацию

Представим, что мы устроились в молодую компанию “N”, деятельность которой связана с ML. Работаем мы над ML (DL, CV) проектом, потом по каким-либо причинам переключаемся на другую работу, в общем делаем перерыв, и возвращаемся к своей или чужой нейроночке.

  1. Наступает момент истины, нужно как-то вспомнить на чем ты остановился, какие гиперпараметры пробовал и, самое главное, к каким результатам они привели. Читать полностью »

*Исключительно ради изучения Machine Learning, разумеется. Под немного недовольным взглядом любимой жены.

Наверное, нет столь простого до уровня спинно-мозговых рефлексов приложений, как Tinder. Для того чтобы им пользоваться достаточно одного пальца, чтобы свайпать и немного нейронов, чтобы выбирать девушек или мужчин, которые тебе больше нравятся. Идеальная реализация брутфорса в выборе пары.

Я решил, что это неплохой способ немного пощупать машинное обучение на новой видеокарте. Останется только объяснить жене, что мне не нужна новая женщина потолще, а я просто тренирую нейросети.

Как клеить по 13 девушек в час, используя машинное обучение и Tinder - 1

Читать полностью »

Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.
Самая сложная задача в Computer Vision - 1
Статья о том как делать трекинг. Где он используется, какие есть разновидности. Как сделать стабильное решение.
Читать полностью »

Как не пополнить ряды стремных специалистов, если ты Data Scientist - 1


Хабра-сообщество провело еще одно интервью в нашем образовательном проекте: прямых эфирах c ребятами из IT, которые отвечают на ваши вопросы в формате живого общения.

Наш проект — попытка создать полноценный набор гайдов и рекомендаций для успешной жизни разработчика: как построить карьеру, получить оффер мечты, привлечь инвестиции в стартап, не тухнуть на скучных проектах, вырасти в своем деле и по пути купить домик у моря.

В начале недели наши вопросы отвечал Борис Янгель — ML-инженер Яндекса, который участвовал в создании мозгов «Алисы», а теперь делает беспилотные автомобили. 

Боря рассказал о том, как стать крутым Data-Scientist, как парашютный спорт помогает ему в работе, почему конференции по ML бесполезны и ответил на недавний пост разгневанного отца про то, как Алиса рекомендовала видео с историями убийств ребенку.
Читать полностью »

3D ML. Часть 1: формы представления 3D-данных - 1

Сегодня появляется все больше 3D датасетов и задач, связанных с 3D данными. Это связано с развитием робототехники и машинного зрения, технологий виртуальной и дополненной реальности, технологий медицинского и промышленного сканирования. Алгоритмы машинного обучения помогают решать сложные задачи, в которых необходимо классифицировать трехмерные объекты, восстанавливать недостающую информацию о таких объектах, или же порождать новые. Несмотря на достигнутые успехи, в области 3D ML остаются нерешенными еще очень много задач, и эта серия заметок призвана популяризировать направление среди русскоязычного сообщества.

В первой части будут рассмотрены основные формы и форматы представления пространственных данных и их особенности.

Читать полностью »

Рубрика «Читаем статьи за вас». Апрель 2020. Часть 1 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. TResNet: High Performance GPU-Dedicated Architecture (DAMO Academy, Alibaba Group, 2020)
  2. Controllable Person Image Synthesis with Attribute-Decomposed GAN (China, 2020)
  3. Learning to See Through Obstructions (Taiwan, USA, 2020)
  4. Tracking Objects as Points (UT Austin, Intel Labs, 2020)
  5. CookGAN: Meal Image Synthesis from Ingredients (USA, UK, 2020)
  6. Designing Network Design Spaces (FAIR, 2020)
  7. Gradient Centralization: A New Optimization Technique for Deep Neural Networks (Hong Kong, Alibaba, 2020)
  8. When Does Unsupervised Machine Translation Work? (Johns Hopkins University, USA, 2020)

Читать полностью »

Data Science и Machine Learning: как превращать будущее в настоящее - 1

ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате живого интервью в нашем инстаграм-аккаунте. Вы можете задать ему свой вопрос в комментариях к этому посту и спикер ответит вам в прямом эфире.

О спикере

Борис закончил МГУ по специальности Machine Learning. Работал в Microsoft Research в группе Криса Бишопа над фреймворком infer.Net, затем в Яндексе руководил разработкой мозгов Алисы. Любит скайдайвинг, нейросетки, гоночные автомобили и смелые решения. Сейчас Борис работает в Яндексе над проектом беспилотных автомобилей.
Читать полностью »

Хочу с вами зачелленджить одну интересную штуку: попробовать обучить нейросеть в Google Таблицах. Безо всяких макросов и прочих хаков, на чистых формулах.

Учим нейросети в Google Таблицах - 1

Читать полностью »

Рубрика «Читаем статьи за вас». Март 2020. Часть 2 - 1

Привет!

Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество! Первая часть мартовской сборки обзоров опубликована ранее.

Статьи на сегодня:

  1. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (UC Berkeley, Google Research, UC San Diego, 2020)
  2. Scene Text Recognition via Transformer (China, 2020)
  3. PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization (Imperial College London, Google Research, 2019)
  4. Lagrangian Neural Networks (Princeton, Oregon, Google, Flatiron, 2020)
  5. Deformable Style Transfer (Chicago, USA, 2020)
  6. Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? (MIT, Google, 2020)
  7. Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification (Carnegie Mellon University, USA, 2020)

Читать полностью »

Рубрика «Читаем статьи за вас». Март 2020. Часть 1 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. Fast Differentiable Sorting and Ranking (Google Brain, 2020)
  2. MaxUp: A Simple Way to Improve Generalization of Neural Network Training (UT Austin, 2020)
  3. Deep Nearest Neighbor Anomaly Detection (Jerusalem, Israel, 2020)
  4. AutoML-Zero: Evolving Machine Learning Algorithms From Scratch (Google, 2020)
  5. SpERT: Span-based Joint Entity and Relation Extraction with Transformer Pre-training (RheinMain University, Germany, 2019)
  6. High-Resolution Daytime Translation Without Domain Labels (Samsung AI Center, Moscow, 2020)
  7. Incremental Few-Shot Object Detection (UK, 2020)

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js