Рубрика «нейронные сети»

Обман автоматизированных камер наблюдения - 1

В последние годы возрос интерес к моделям машинного обучения, в том числе для распознавания зрительных образов и лиц. Хотя технология далека от совершенства, она уже позволяет вычислять преступников, находить профили в социальных сетях, отслеживать изменения и многое другое. Simen Thys и Wiebe Van Ranst доказали, что, внеся лишь незначительные изменения во входную информацию свёрточной нейронной сети, можно подменить конечный результат. В этой статье мы рассмотрим визуальные патчи для проведения атак на распознавание.Читать полностью »

Прогресс в области нейросетей вообще и распознавания образов в частности, привел к тому, что может показаться, будто создание нейросетевого приложения для работы с изображениями — это рутинная задача. В некотором смысле, так и есть — если вам пришла в голову идея, связанныя с распознаватием образов, не сомневайтесь, что кто-то уже что-то подобное написал. Все, что от вас требуется, это найти в Гугле соответствующий кусок кода и «скомпилировать» его у автора.

Однако, все еще есть многочисленные детали, делающие задачу не столько неразрешимой, сколько… нудной, я бы сказал. Отнимающей слишком много времени, особенно если вы — новичок, которому нужно руководство, step-by-step, проект, выполненный прямо на ваших глазах, и выполненный от начала и до конца. Без обычных в таких случаях «пропустим эту очевидную часть» отговорок.

В этой статье мы рассмотрим задачу создания определителя пород собак (Dog Breed Identifier): создадим и обучим нейросеть, а затем портируем ее на Java для Android и опубликуем на Google Play.

Если вы хотите посмотреть на готовый результат, вот он: NeuroDog App на Google Play.

Веб сайт с моей робототехникой (в процессе): robotics.snowcron.com.
Веб сайт с самой программой, включая руководство: NeuroDog User Guide.

А вот скриншот программы:

image

Читать полностью »

В прошлом месяце на NVIDIA GTC 2019 компания NVIDIA представила новое приложение, которое превращает нарисованные пользователем простые цветные шарики в великолепные фотореалистичные изображения.

Приложение построено на технологии генеративно-состязательных сетей (GAN), в основе которой лежит глубинное обучение. Сама NVIDIA называет его GauGAN — это каламбур-отсылка к художнику Полу Гогену. В основе функциональности GauGAN лежит новый алгоритм SPADE.

В этой статье я объясню, как работает этот инженерный шедевр. И чтобы привлечь как можно больше заинтересованных читателей, я постараюсь дать детализированное описание того, как работают свёрточные нейронные сети. Поскольку SPADE — это генеративно-состязательная сеть, я расскажу подробнее и о них. Но если вы уже знакомы с эти термином, вы можете сразу перейти к разделу «Image-to-image трансляция».

Генерация изображений

Давайте начнем разбираться: в большинстве современных приложений глубинного обучения используется нейронный дискриминантный тип (дискриминатор), а SPADE — это генеративная нейронная сеть (генератор).
Читать полностью »

Перевод Demystifying Convolutional Neural Networks.

Демистифицируем свёрточные нейросети - 1
Свёрточные нейросети.

В прошлом десятилетии мы наблюдали удивительный и беспрецедентный прогресс в сфере компьютерного зрения. Сегодня компьютеры умеют распознавать объекты на изображениях и кадрах видео с точностью до 98 %, уже опережая человека с его 97 %. Именно функции человеческого мозга вдохновляли разработчиков при создании и совершенствовании методик распознавания.

Когда-то неврологи проводили эксперименты на кошках и выяснили, что одни и те же части изображения активируют одни и те же части кошачьего мозга. То есть когда кошка смотрит на круг, в её мозге активируется зона «альфа», а когда смотрит на квадрат, активируется зона «бета». Исследователи пришли к выводу, что в мозге животных есть области нейронов, реагирующие на конкретные характеристики изображения. Иными словами, животные воспринимают окружающую среду через многослойную нейронную архитектуру мозга. И каждая сцена, каждый образ проходит через своеобразный блок выделения признаков, и только потом передаётся в более глубокие структуры мозга.

Вдохновлённые этим, математики разработали систему, в которой эмулируются группы нейронов, срабатывающие на разные свойства изображения и взаимодействующие друг с другом для формирования общей картины.
Читать полностью »

В 1943 году американские нейропсихологи Мак-Каллок и Питтс разработали компьютерную модель нейронной сети, а в 1958 первая работающая однослойная сеть распознавала некоторые буквы. Сейчас же нейросети для чего только не используются: для прогнозирования курса валют, диагностики болезней, автопилотов и построения графики в компьютерных играх. Как раз про последнее и поговорим.

Евгений Туманов работает Deep Learning инженером в компании NVIDIA. По итогам его выступления на конференции HighLoad++ мы подготовили рассказ о применении Machine Learning и Deep Learning в графике. Машинное обучение не заканчивается на NLP, Computer Vision, рекомендательных системах и задачах поиска. Даже если вы не очень знакомы с этим направлением, то сможете применить наработки из статьи в своей области или индустрии.

Рассказ будет состоять из состоит из трех частей. Мы сделаем обзор задач в графике, которые решаются с помощью машинного обучения, выведем главную идею, и опишем кейс применения этой идеи в определенной задаче, а конкретно — в рендеринге облаков.Читать полностью »

Как научить машину понимать инвойсы и извлекать из них данные - 1Привет! Меня зовут Станислав Семенов, я работаю над технологиями извлечения данных из документов в R&D ABBYY. В этой статье я расскажу об основных подходах к обработке полуструктурированных документов (инвойсы, кассовые чеки и т.д.), которые мы использовали совсем недавно и которые используем прямо сейчас. А еще мы поговорим о том, насколько для решения этой задачи применимы методы машинного обучения.
Читать полностью »

Несколько месяцев назад наши коллеги из Google провели на Kaggle конкурс по созданию классификатора изображений, полученных в нашумевшей игре «Quick, Draw!». Команда, в которой участвовал разработчик Яндекса Роман Власов, заняла в конкурсе четвертое место. На январской тренировке по машинному обучению Роман поделился идеями своей команды, финальной реализацией классификатора и интересными практиками соперников.

— Всем привет! Меня зовут Рома Власов, сегодня я вам расскажу про Quick, Draw! Doodle Recognition Challenge.
Читать полностью »

image

Не успели отшуметь новости о нейросети BERT от Google, показавшей state-of-the-art результаты на целом ряде разговорных (NLP) задач в машинном обучении, как OpenAI выкатили новую разработку: GPT-2. Это нейронная сеть с рекордным на данный момент числом параметров (1.5 млрд, против обычно используемых в таких случаях 100-300 млн) оказалась способна генерировать целые страницы связного текста.

Генерировать настолько хорошо, что в OpenAI отказались выкладывать полную версию, опасаясь что эту нейросеть будут использовать для создания фейковых новостей, комментариев и отзывов, неотличимых от настоящих.

Тем не менее, в OpenAI выложили в общий доступ уменьшенную версию нейросети GPT-2, со 117 млн параметров. Именно ее мы запустим через сервис Google Colab и поэкспериментруем с ней.

Читать полностью »

Один из главных источников данных для сервиса Яндекс.Карты — спутниковые снимки. Чтобы с картой было удобно работать, на снимках многоугольниками размечаются объекты: леса, водоёмы, улицы, дома и т. п. Обычно разметкой занимаются специалисты-картографы. Мы решили помочь им и научить компьютер добавлять многоугольники домов без участия людей.

За операции с изображениями отвечает область ИТ, которая называется компьютерным зрением. Последние несколько лет большую часть задач из этой области очень удачно решают, применяя нейронные сети. О нашем опыте применения нейронных сетей в картографировании мы и расскажем сегодня читателям Хабра.

Как превратить спутниковые снимки в карты. Компьютерное зрение в Яндексе - 1

Читать полностью »

Привет. Меня зовут Алексей Рак, я разработчик голосового помощника Алиса в минском офисе Яндекса. Эту позицию я получил, пройдя здесь, в этой же команде, трехмесячную стажировку в прошлом году. О ней я и собираюсь вам рассказать. Если хотите сами попробовать — вот ссылка на стажировку 2019 года.

Как я помогал Алисе не откликаться на другие имена. Стажировка в Яндексе - 1

Читать полностью »