Рубрика «нейронные сети»

image
Все мы знакомы с такой способностью нейронных сетей, как распознавание рукописного текста. Основы этой технологии существуют уже много лет, но, лишь относительно недавно, скачок в области компьютерных мощностей и параллельной обработки данных позволили сделать из этой технологии очень практичное решение. Тем не менее, это практичное решение, в основе своей, будет представлено в виде цифрового компьютера многократно изменяющего биты, точно так же, как и при выполнении любой другой программы. Но в случае с нейронной сетью, разработанной исследователями из университетов Wisconsin, MIT, и Columbia, дело обстоит по-другому. Они создали стеклянную панель, не требующую собственного электропитания, но при этом способную распознавать рукописные цифры.
Читать полностью »

Нейросети — это та тема, которая вызывает огромный интерес и желание разобраться в ней. Но, к сожалению, поддаётся она далеко не каждому. Когда видишь тома непонятной литературы, теряешь желание изучить, но всё равно хочется быть в курсе происходящего.

В конечном итоге, как мне показалось, нет лучше способа разобраться, чем просто взять и создать свой маленький проект.
Читать полностью »

Продолжаем постигать современную магию (компьютерное зрение). Часть 2 не значит, что нужно сначала читать часть 1. Часть 2 значит, что теперь всё серьёзно — мы хотим понять всю мощь нейросетей в зрении. Детектирование, трекинг, сегментация, оценка позы, распознавание действий… Самые модные и крутые архитектуры, сотни слоёв и десятки гениальных идей уже ждут вас под катом!

Вижу, значит существую: обзор Deep Learning в Computer Vision (часть 2) - 1
Читать полностью »

Машинное обучение vs. аналитический подход - 1

Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »

Введение

Некоторое время назад мне потребовалось решить задачу сегментации точек в Point Cloud (облака точек — данные, полученные с лидаров).

Пример данных и решаемой задачи:
пример данных

Поиски общего обзора существующих методов оказались неуспешными, поэтому пришлось собирать информацию самостоятельно. Результат вы можете видеть: здесь собраны наиболее важные и интересные (по моему мнению) статьи за последние несколько лет. Все рассмотренные модели решают задачу сегментации облака точек (к какому классу принадлежит каждая точка).

Эта статья будет полезна тем, кто хорошо знаком с нейронными сетями и хочет понять, как применять их к неструктурированным данным (к примеру графам).

Читать полностью »

Примечание

Michael NielsenПеред вами – перевод свободной онлайн-книги Майкла Нильсена «Neural Networks and Deep Learning», распространяемой под лицензией Creative Commons Attribution-NonCommercial 3.0 Unported License. Мотивацией к его созданию послужил успешный опыт перевода учебника по программированию, "Выразительный JavaScript". Книга по нейросетям тоже достаточно популярна, на неё активно ссылаются авторы англоязычных статей. Её переводов я не нашёл, за исключением перевода начала первой главы с сокращениями.

Желающие отблагодарить автора книги могут сделать это на её официальной странице, переводом через PayPal или биткоин. Для поддержки переводчика на Хабре есть форма «поддержать автора».

Введение

Этот учебник подробно расскажет вам о таких понятиях, как:

  • Нейросети — прекрасная программная парадигма, созданная под влиянием биологии, и позволяющая компьютеру учиться на основе наблюдений.
  • Глубокое обучение – мощный набор техник обучения нейросетей.

Нейросети (НС) и глубокое обучение (ГО) на сегодня дают наилучшее решение многих задач из областей распознавания изображений, голоса и обработки естественного языка. Этот учебник научит вас многим ключевым концепциям, лежащим в основе НС и ГО.
Читать полностью »

Заголовок статьи может показаться странным и это неспроста — он прекрасен именно тем, что написал его не я, а LSTM-нейросеть (а точнее его часть перед "или").

Как мы создали систему оповещения о ядерной угрозе, или как я обучил нейросеть на заголовках Хабра - 1

(схема LSTM взята из Understanding LSTM Networks)

И сегодня мы разберёмся, как можно генерировать заголовки статей Хабра (и в принципе сам текст можно генерировать этой же нейро-архитектурой). Весь код доступен для запуска онлайн в notebooks от Гугла. Данные, как всегда, открыты на github.

А вот здесь можно запустить уже обученную модель на GPU от Гугла (бесплатно и без смс) и собственно погенерить заголовки.

Читать полностью »

Недавно вышла статья которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.
image
Ну что. Разберём “лопнул ли пузырь”, “как дальше жить” и поговорим откуда вообще такая загогулина.
Читать полностью »

Как мы модерируем объявления - 1

Каждый сервис, чьи пользователи могут создавать собственный контент (UGC — User-generated content), вынужден не только решать бизнес-задачи, но и наводить порядок в UGC. Плохая или некачественная модерация контента в итоге может уменьшить привлекательность сервиса для пользователей, вплоть до прекращения его работы.

Сегодня мы вам расскажем про синергию между Юлой и Одноклассниками, которая помогает нам эффективно модерировать объявления в Юле.

Синергия вообще штука очень полезная, а в современном мире, когда технологии и тренды меняются очень быстро, она может превратиться в палочку-выручалочку. Зачем тратить дефицитные ресурсы и время на изобретение того, что до тебя уже изобрели и довели до ума?

Так же подумали и мы, когда перед нами во весь рост встала задача модерации пользовательского контента — картинок, текста и ссылок. Наши пользователи каждый день загружают в Юлу миллионы единиц контента, и без автоматической обработки промодерировать все эти данные вручную вообще не реально.

Поэтому мы воспользовались уже готовой платформой модерации, которую к тому времени наши коллеги из Одноклассников допилили до состояния «почти совершенство».
Читать полностью »

В последнее время мы в группе распознавания компании ABBYY всё больше применяем нейронные сети в различных задачах. Очень хорошо они зарекомендовали себя в первую очередь для сложных видов письменности. В прошлых постах мы рассказывали о том, как мы используем нейронные сети для распознавания японской, китайской и корейской письменности.

image Пост про распознавания японских и китайских иероглифов
image Пост про распознавание корейских символов

В обоих случаях мы использовали нейронные сети с целью полной замены метода классификации отдельного символа. Во всех подходах фигурировало множество различных сетей, и в задачи некоторых из них входила необходимость адекватно работать на изображениях, которые не являются символами. Модель в этих ситуациях должна как-то сигнализировать о том, что перед нами не символ. Сегодня мы как раз расскажем о том, зачем это в принципе может быть нужно, и о подходах, с помощью которых можно добиться желаемого эффекта.

Мотивация

А в чём вообще проблема? Зачем нужно работать на изображениях, которые не являются отдельными символами? Казалось бы, можно разделить фрагмент строки на символы, классифицировать их все и собрать из этого результат, как, например, на картинке ниже.

Отличаем символы от мусора: как построить устойчивые нейросетевые модели в задачах OCR - 3

Да, конкретно в данном случае так действительно можно сделать. Но, увы, реальный мир устроен куда более сложно, и на практике при распознавании приходится иметь дело с геометрическими искажениями, смазом, пятнами кофе и прочими трудностями.
Читать полностью »