Рубрика «computer vision»

Визуальный SLAM: делаем HD-карты при помощи смартфона - 1

Привет! Меня зовут Александр Гращенков, я iOS-разработчик в компании RoadAR. С 2016 года живу и работаю в Иннополисе, занимаюсь компьютерным зрением и интеграцией нейросетей в мобильные платформы.

Читать полностью »

Во многих популярных курсах машинного и глубокого обучения вас научат классифицировать собак и кошек, предсказывать цены на недвижимость, покажут еще десятки задач, в которых машинное обучение, вроде как, отлично работает. Но вам расскажут намного меньше (или вообще ничего) о тех случаях, когда ML-модели не работают так, как ожидалось.

Частой проблемой в машинном обучении является неспособность ML-моделей корректно работать на большем разнообразии примеров, чем те, что встречались при обучении. Здесь идет речь не просто о других примерах (например, тестовых), а о других типахЧитать полностью »

Привет! Меня зовут Александр, я работаю в команде матчинга Ozon. Ежедневно мы имеем дело с десятками миллионов товаров, и наша задача — поиск и сопоставление одинаковых предложений (нахождение матчей) на нашей площадке, чтобы вы не видели бесконечную ленту одинаковых товаров.
На странице любого товара на Ozon есть картинки, заголовок, описание и дополнительные атрибуты. Всю эту информацию мы хотим извлекать и обрабатывать для решения разных задач. И особенно она важна для команды матчинга. 
Чтобы извлекать признаки из товара, мы строим его векторные представления (эмбеддинги), используя различные текстовые модели (fastText, трансформеры) для описаний и заголовков и целый набор архитектур свёрточных сетей (ResNet, Effnet, NFNet) — для картинок. Далее эти векторы используются для генерации фичей и товарного сопоставления.
На Ozon ежедневно появляются миллионы обновлений — и считать эмбеддинги для всех моделей становится проблематично. А что, если вместо этого (где каждый вектор описывает отдельную часть товара) мы получим один вектор для всего товара сразу? Звучит неплохо, только как бы это грамотно реализовать…

Векторное представление товаров Prod2Vec: как мы улучшили матчинг и избавились от кучи эмбеддингов - 1
Читать полностью »

Рождение Albumentations - 1

В этом посте я расскажу историю появления Open Source библиотеки Albumentations как я ее запомнил. В технические детали углубляться не буду. Основная задача текста - логирование, то есть надо написать историю, которую мне будет интересно прочитать через 20 лет.

Читать полностью »

Закройте глаза и представьте себя в цехах большого завода. Пусть это будет производство вакцин в ампулах. А вы, как и еще 70 человек, заняты тем, что целыми днями просматриваете ампулы, чтобы отобрать дефектные. И так весь день… Сколько ампул с малейшими отклонениями от нормы вы бы не заметили? Задачу усложняет то, что дефектом считается не только неправильная запайка, но и едва заметная точка на дне ампулы. Можете ли вы быть на 100% уверены, что не пропустили ни одного дефекта? А ведь вас еще будут выборочно перепроверять.

Устают глаза, притупляется внимание.

Читать полностью »

Кадр из аниме "Жрица и медведь"
Кадр из аниме "Жрица и медведь"

Задача отслеживания объектов на изображении - одна из самых горячих и востребованных областей ML. Однако уже сейчас мы имеем огромное разнообразие различных техник и инструментов. Данная статья поможет начать Ваш путь в мир компьютерного зрения!

Читать полностью »

image

Всем привет! Пока киберпанк еще не настолько вошел в нашу жизнь, и нейроинтерфейсы далеки от идеала, первым этапом на пути к будущему манипуляторов могут стать LiDAR. Поэтому, чтобы не скучать на праздниках, я решил немного пофантазировать на тему средств управления компьютером и, предположительно, любым устройством, вплоть до экскаватора, космического корабля, дрона или кухонной плиты.
Читать полностью »

Приветъ Хабр
Приветъ Хабр

Всем добрейшего дня! Совсем недавно закончилось ежегодное международное соревнование AI Contest, организатором которого является Сбер вместе с российскими и зарубежными партнёрами в рамках конференции Artificial Intelligence Journey. Задачи этого года: Digital Петр: распознавание рукописей Петра I, NoFloodWithAI: паводки на реке Амур и AI 4 Humanities: ruGPT-3Читать полностью »

Scaled YOLO v4 является самой точной нейронной сетью (55.8% AP) на датасете Microsoft COCO среди всех опубликованных нейронных сетей на данный момент. А также является лучшей с точки зрения соотношения скорости к точности во всем диапазоне точности и скорости от 15 FPS до 1774 FPS. На данный момент это Top1 нейронная сеть для обнаружения объектов.

Scaled YOLO v4 обгоняет по точности нейронные сети:

  • Google EfficientDet D7x / DetectoRS or SpineNet-190 (self-trained on extra-data)
  • Amazon Cascade-RCNN ResNest200
  • Microsoft RepPoints v2
  • Facebook RetinaNet SpineNet-190

Мы показываем, что подходы YOLO и Cross-Stage-Partial (CSP) Network являются лучшими с точки зрения, как абсолютной точности, так и соотношения точности к скорости.

График Точности (вертикальная ось) и Задержки (горизонтальная ось) на GPU Tesla V100 (Volta) при batch=1 без использования TensorRT:

Scaled YOLO v4 самая лучшая нейронная сеть для обнаружения объектов на датасете MS COCO - 1

Читать полностью »

Шесть степеней свободы: 3D object detection и не только - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js