Рубрика «image processing»

image

Этим летом библиотека OpenCV отмечает свой двадцатый юбилей. OpenCV — самая большая библиотека компьютерного зрения в мире. Она используется чуть ли не в каждом мобильном телефоне, планшете и камере, не говоря уже о настольных системах и серверах. SourceForge рапортует о 20 миллионах скачиваний релизных версий библиотеки, и это число продолжает расти.
Читать полностью »

OpenCV — библиотека с историей непрерывной разработки в 20 лет. Возраст, когда начинаешь копаться в себе, искать предназначение. Есть ли проекты на ее основе, которые сделали чью-то жизнь лучше, кого-то счастливее? А можешь ли ты сделать это сам? В поисках ответов и желании открыть для себя ранее неизвестные модули OpenCV, хочу собрать приложения, которые "делают красиво" — так, чтобы сначала было "вау" и только потом ты скажешь "о да, это компьютерное зрение".

Право первой статьи получил эксперимент с переносом стилей мировых художников на фотографии. Из статьи вы узнаете, что является сердцем процедуры и об относительно новом OpenCV.js — JavaScript версии библиотеки OpenCV.

opencv4arts: Нарисуй мой город, Винсент - 1

Читать полностью »

Introduction

Our project implements a real-time edge detection system based on capturing image frames from an OV7670 camera and streaming them to a VGA monitor after applying a grayscale filter and Sobel operator. Our design is built on a Cyclone IV FPGA board which enables us to optimize the performance using the powerful features of the low-level hardware and parallel computations which is important to meet the requirements of the real-time system.

We used ZEOWAA FPGA development board which is based on Cyclone IV (EP4CE6E22C8N). Also, we used Quartus Prime Lite Edition as a development environment and Verilog HDL as a programming language. In addition, we used the built-in VGA interface to drive the VGA monitor, and GPIO (General Pins for Input and Output) to connect the external hardware with our board.

ZEOWAA FPGA development board

Читать полностью »

Как мы заменили спортивного скаута нейронной сетью - 1
Да, действительно, мы смогли заменить нейронной сетью спортивного скаута и стали автоматически собирать данные об игре. И теперь знаем о спортивном состязании больше присутствующего на нем зрителя, а иногда и судьи.
Читать полностью »

В продолжении статьи про восстановление расфокусированных и смазанных изображений хочу поделиться своими результатами восстановления реальных изображений с помощью фильтра Винера. В качестве библиотеки обработки изображений использовалась OpenCV 3.4. Фотокамера – Nikon D320, объектив Nikon DX AF-S NIKKOR 18-105mm, расфокусировка осуществлялась вручную, съёмка осуществлялась без штатива.

Читать полностью »

В этой статье я бы хотел рассказать про некоторые приемы работы с данными при обучении модели. В частности, как натянуть сегментацию объектов на ббоксы, а также как обучить модель и получить разметку датасета, разметив всего несколько сэмплов.
Пицца аля-semi-supervised - 1
Читать полностью »

В конце зимы этого года прошло соревнование IEEE's Signal Processing Society — Camera Model Identification. Я участвовал в этом командном соревновании в качестве ментора. Об альтернативном способе формирования команды, решении и втором этапе под катом
kaggle: IEEE's Camera Model Identification - 1
Читать полностью »

image

Всем привет!

В данной статье хочу поделиться с вами историей о том, как одна и та же архитектура модели принесла сразу две победы в соревновательном машинном обучении на платформе topcoder с интервалом месяц.

Речь пойдёт о следующих соревнованиях:

  • Urban 3d mapper — поиск домиков на спутниковых снимках. Соревнование длилось 2 месяца, было 54 участников и пять призовых мест.
  • Spacenet: road detection challenge — поиск графа дорог. На решение также давалось 2 месяца, включало 33 участника и пять призовых позиций.

В статье рассказывается об общих подходах к решению таких задач и особенностях реализации для конкретных конкурсов.

Для комфортного чтения статьи желательно обладать базовыми знаниями о свёрточных нейронных сетях и их обучении.

Читать полностью »

image

В интернете достаточно статей и проектов для ресайза изображений. Почему же нужна еще одна? В этой статье я расскажу почему нас не удовлетворили текущие решения и пришлось пилить собственное.
Читать полностью »

Детектирование и отслеживание множественных объектов в видеопотоке на FPGA - 1
В этой статье я хочу рассказать о реализации системы обнаружения и отслеживания множественных объектов в видеопотоке. Данная статья базируется на двух предыдущих: Детектирование движения в видеопотоке на FPGA и Фильтрация изображения методом математической морфологии на FPGA. Захват и первичная обработка изображения осуществляется при помощи методов, описанных в первой статье, а фильтрация изображения описана во второй.

Следуя целям, поставленным в первой статье, я решил реализовать алгоритм отрисовки рамки вокруг обнаруженного объекта. В процессе выполнения этой задачи, я столкнулся с вопросом: а вокруг какого именно объекта надо рисовать рамку? Объектов, попавших в кадр после фильтрации, может оказаться множество: одни из них маленькие, а другие большие. Если рисовать одну рамку вокруг всех объектов, попавших в кадр, то это делается не сложно, но результат работы такой системы вряд ли кому будет интересен.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js