Рубрика «обработка изображений»

image

Здравствуйте, товарищи!

На выходных проходил хакасборкатон — гонки на самоуправляемых моделях автомобилей на базе комплекта donkeycar при содействии Х5 и FLESS.

Задача заключалась в следующем: сначала надо было собрать машинку из запчастей, затем ее обучить проходить трассу. Победитель определялся по самому быстрому прохождению 3 кругов. За наезд на конус — дисквалификация.

Хотя подобная задача для машинного обучения не нова, но сложности могут поджидать на всем пути: от невозможности заставить нормально работать вайфай до нежелания обученной модели пилотировать железо по треку. И все это в жестких временных рамках!

Когда мы собирались на это соревнование, сразу было понятно, что будет очень весело и очень сложно, ведь нам давалось всего 5 часов с учётом перерыва на обед чтобы собрать машинку, записать датасет и обучить модель.
Читать полностью »

image

Распознавание трехмерных объектов в Apple iPad 11 Pro, оснащенном лидаром, стало более глубоким и детализированным. Для этого также используются ToF-камеры с разными технологиями измерения дальности положения точки.

Apple инициировала гонку использования лидаров в различных продуктах. Компания Apple встроила лидар в свой iPad Pro 11, и теперь кажется, что лидарами хотят пользоваться все.

Маневр Apple и реакция на него повлияли на всю электронную промышленность. Поставщики микросхем и датчиков пересматривают свои планы. Некоторые уже изменили свои бизнес-модели.

Но что такое лидар? Компания Apple выбрала этот термин для описания нового датчика, который измеряет глубину — другими словами, это датчик, который распознает объекты в трех измерениях.

Лидар в планшетах и смартфонах – это, по сути, «просто разновидность технологии для распознавания трехмерных объектов», — объяснил Пьер Камбу, главный аналитик отдела фотоники и дисплеев компании в Yole Développement.
Читать полностью »

Декодируем JPEG-изображение с помощью Python - 1

Всем привет, сегодня мы будем разбираться с алгоритмом сжатия JPEG. Многие не знают, что JPEG — это не столько формат, сколько алгоритм. Большинство JPEG-изображений, которые вы видите, представлены в формате JFIF (JPEG File Interchange Format), внутри которого применяется алгоритм сжатия JPEG. К концу статьи вы будете гораздо лучше понимать, как этот алгоритм сжимает данные и как написать код распаковки на Python. Мы не будем рассматривать все нюансы формата JPEG (например, прогрессивное сканирование), а поговорим только о базовых возможностях формата, пока будем писать свой декодер.
Читать полностью »

image

Рендеринг в реальном времени для виртуальной реальности создаёт уникальный спектр задач, и основными из них являются необходимость поддержки фотореалистичных эффектов, достижение высоких разрешений и увеличение частоты обновления. Для решения этих задач исследователи Facebook Reality Labs разработали DeepFocus — систему рендеринга, представленную нами в декабре 2018 года; она использует ИИ для создания сверхреалистичной графики в устройствах с переменным фокусным расстоянием. В этом году на виртуальной Конференции SIGGRAPH мы представили дальнейшее развитие этой работы, открывающее новый этап на нашем пути к созданию будущих дисплеев высокой чёткости для VR.
Читать полностью »

Данная статья посвящается объяснению устройства архитектуры нейронной сети RetinaNet. Обзор был проведён мною в ходе выполнения дипломной работы, а так как для его написания потребовалось обращаться исключительно к англоязычным источникам и собрать найденную информацию воедино, я решил, что полученный материал поможет кому-то сократить время на поиск нужной информации и упростить понимание устройства нейросетей для задачи Object Detection.

Введение

Архитектура свёрточной нейронной сети (СНС) RetinaNet состоит из 4 основных частей, каждая из которых имеет своё назначение:

a) Backbone – основная (базовая) сеть, служащая для извлечения признаков из поступающего на вход изображения. Данная часть сети является вариативной и в её основу могут входить классификационные нейросети, такие как ResNet, VGG, EfficientNet и другие;

b) Feature Pyramid Net (FPN) – свёрточная нейронная сеть, построенная в виде пирамиды, служащая для объединения достоинств карт признаков нижних и верхних уровней сети, первые имеют высокое разрешение, но низкую семантическую, обобщающую способность; вторые — наоборот;

c) Classification Subnet – подсеть, извлекающая из FPN информацию о классах объектов, решая задачу классификации;

d) Regression Subnet – подсеть, извлекающая из FPN информацию о координатах объектов на изображении, решая задачу регрессии.

На рис. 1 изображена архитектура RetinaNet c ResNet нейросетью в качестве backbone.

Архитектура нейронной сети RetinaNet - 1
Рисунок 1 – Архитектура RetinaNet с backbone-сетью ResNet

Разберём подробно каждую из частей RetinaNet, представленных на рис. 1.
Читать полностью »

image

Помню, как однажды увидел фотографию выше на Flickr и сломал мозг, пытаясь понять, что с ней не так. Дело было в том, что пропеллер вращался в то время, когда датчик движения в камере «считывал показания», то есть во время экспозиции камеры происходило какое-то движение. Об этом действительно стоит подумать, давайте-ка подумаем вместе.

Многие современные цифровые камеры используют КМОП-матрицу в качестве своего «чувствительного» устройства, также известную как активный датчик пикселей, который работает путем накопления электронного заряда при падении на него света. По истечении определенного времени – времени экспозиции – заряд построчно перемещается обратно в камеру для дальнейшей обработки. После этого камера сканирует изображение, построчно сохраняя ряды пикселей. Изображение будет искажено, если во время съемки присутствовало хоть какое-то движение. Для иллюстрации представьте съемку вращающегося пропеллера. В анимациях ниже красная линия соответствует текущему положению считывания, и пропеллер продолжает вращаться по мере считывания. Часть под красной линией – это полученное изображение.

Первый пропеллер совершает 1/10 часть вращения во время экспозиции:

image

Подписывайтесь на каналы:
@Ontol — самые интересные тексты/видео всех времен и народов, влияющие на картину мира
@META LEARNING — где я делюсь своими самыми полезными находками про образование и роль ИТ/игр в образовании (а так же мыслями на эту тему Антона Макаренко, Сеймура Пейперта, Пола Грэма, Джозефа Ликлайдера, Алана Кея)

Читать полностью »

«Breakout-YOLO»: знакомимся с шустрой object-detection моделью, играя в классический «Арканоид» - 1

Всем привет! Весенний семестр для некоторых студентов 3-го курса ФУПМ МФТИ ознаменовался сдачей проектов по курсу «Методы оптимизации». Каждый должен был выделить интересную для себя тему (или придумать свою) и воплотить её в жизнь в виде кода, научной статьи, численного эксперимента или даже бота в Telegram.

Жёстких ограничений на выбор темы не было, поэтому можно было дать разгуляться фантазии. You Only Live Once! — воскликнул я, и решил использовать эту возможность, чтобы привнести немного огня в бессмертную классику.Читать полностью »

Как понять, что нейросеть решит вашу проблему. Прагматичное руководство - 1

Haystacks at Sunset Reimagined by AshnoAlice

Инженер по машинному обучению Джордж Хосу задает вопрос: «Какие проблемы решает машинное обучение?». Или конкретнее, с учетом современного развития отрасли: «Какие проблемы нейросеть способна решить на практике?». Команда Mail.ru Cloud Solutions перевела статью, так как рассуждения на эту тему, как нам кажется, встречаются редко.
Читать полностью »

Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.
Самая сложная задача в Computer Vision - 1
Статья о том как делать трекинг. Где он используется, какие есть разновидности. Как сделать стабильное решение.
Читать полностью »

image

Привет. Хорошие новости: мы успешно завершили краудсорсинговый проект «Открой историю Большого» по оцифровке программ, афиш и фотографий, которые хранятся в музее Большого театра. Итогами делимся на сайте openbolshoi.ru, а в этом посте рассказываем, как технически был организован проект.

О том, почему мы начали заниматься этим проектом и что сделали на первом этапе, можно почитать здесь. А что же было дальше? После первой части проекта мы благодаря ABBYY FineReader PDF и с помощью волонтеров подготовили файлы программ и афиш в формате PDF с вычитанным текстовым слоем и передали их музею Большого театра. Теперь все данные хранятся в электронном виде, и сотрудники используют их, чтобы искать и копировать нужную информацию. Это быстрее и удобнее, чем перебирать документы в шкафах и перепечатывать текст из оригиналов.

Но как узнать больше о представлениях, а также о людях, чьи судьбы тесно связаны с историей театра? Как собрать статистику:

Помогли технологии Natural Language Processing (NLP), разработанные в ABBYY. Сегодня мы расскажем, как на втором этапе проекта алгоритмы извлекли из программ и афиш необходимые сведения, заполнили поля базы данных, а затем 7500 волонтеров проверили и дополнили информацию. А в конце поста читайте, как сейчас создается электронный архив музея с удобным поиском по всем представлениям и персонам.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js