Рубрика «Компьютерное зрение»

Nomeroff Net numberplate detection OCR example

Продолжаем рассказ о том как распознавать номерные знаки для тех кто умеет писать приложение «hello world» на python-е! В этой части научимся тренировать модели, которые ищут регион заданного объекта, а также узнаем как написать простенькую RNN-сеть, которая будет справляться с чтением номера лучше чем некоторые коммерческие аналоги.
В этой части я расскажу как тренировать Nomeroff Net под Ваши данные, как получить высокое качество распознавания, как настроить поддержку GPU и ускорить все на порядок…
Читать полностью »

Kaggle-подходы для CV в проде: внедрить нельзя выпилить - 1
Среди дата сайнтистов ведется немало холиваров, и один из них касается соревновательного машинного обучения. Действительно ли успехи на Kaggle показывают способности специалиста решать типичные рабочие задачи? Арсений arseny_info (R&D Team Lead @ WANNABY, Kaggle Master, далее в тексте A.) и Артур n01z3 (Head of Computer Vision @ X5 Retail Group, Kaggle Grandmaster, далее в тексте N.) отмасштабировали холивар на новый уровень: вместо очередного обсуждения в чате взяли микрофоны и устроили публичное обсуждение на митапе, по мотивам которого и родилась эта статья.
Читать полностью »

Несколько месяцев назад наши коллеги из Google провели на Kaggle конкурс по созданию классификатора изображений, полученных в нашумевшей игре «Quick, Draw!». Команда, в которой участвовал разработчик Яндекса Роман Власов, заняла в конкурсе четвертое место. На январской тренировке по машинному обучению Роман поделился идеями своей команды, финальной реализацией классификатора и интересными практиками соперников.

— Всем привет! Меня зовут Рома Власов, сегодня я вам расскажу про Quick, Draw! Doodle Recognition Challenge.
Читать полностью »

Здравствуйте, я школьник 11 классов, интересуюсь программированием, около-IT тематикой.

Пишу данный пост с целью поделиться своим проектом, занявшим 10 часов моей жизни на выходных и выполненным с целью понять возможности современных методов анализа данных. Публикация может рассматриваться как пример удачной реализации для людей, несведущих в этой области знания, а так же как просьба указать мои ошибки для людей, соответственно, сведущих.
Читать полностью »

Один из главных источников данных для сервиса Яндекс.Карты — спутниковые снимки. Чтобы с картой было удобно работать, на снимках многоугольниками размечаются объекты: леса, водоёмы, улицы, дома и т. п. Обычно разметкой занимаются специалисты-картографы. Мы решили помочь им и научить компьютер добавлять многоугольники домов без участия людей.

За операции с изображениями отвечает область ИТ, которая называется компьютерным зрением. Последние несколько лет большую часть задач из этой области очень удачно решают, применяя нейронные сети. О нашем опыте применения нейронных сетей в картографировании мы и расскажем сегодня читателям Хабра.

Как превратить спутниковые снимки в карты. Компьютерное зрение в Яндексе - 1

Читать полностью »

Создание автономных машин — популярная нынче тема и много интересного тут происходит на любительском уровне.
Самым старым и известным курсом была онлайн-степень от Udacity.

Итак, в автономных машинах есть очень модный подход — Behavioral Cloning, суть которого заключается в том, что компьютер учится вести себя как человек (за рулем), опираясь только на записанные входные и выходные данные. Грубо говоря, есть база картинок с камеры и соотвествующий им угол поворота руля.
Читать полностью »

Пример распознавания номерных знаков
Все начиналось банально — моя компания уже год платила ежемесячно плату за сервис, который умел находить регион с номерными знаками на фото. Эта функция применяется для автоматической зарисовки номера у некоторых клиентов.

И в один прекрасный день МВД Украины открыло доступ к реестру транспортных средств. Теперь по номерному знаку стало возможным проверять некоторую информацию про автомобиль (марку, модель, год выпуска, цвет и т.д. )! Скучная рутина линейного программирования померкла перед новой свехзадачей — считывать номера по всей базе фото и валидировать эти данные с теми, что указывал пользователь. Сами знаете как это бывает «глаза загорелись» — вызов принят, все остальные задачи на время стали скучны и монотонны… Мы принялись за работу и получили неплохие результаты, чем, собственно и решили поделиться с сообществом.

Для справки: на сайт AUTO.RIA.com, в день добавляется около 100 000 фото.

Датасаентисты давно уже знают и умеют решать подобные задачи, поэтому мы с dimabendera написали эту статью именно для программистов. Если вы не боитесь словосочетания «сверточные сети» и умеете писать «Hello World» на питоне — милости просим под кат…
Читать полностью »

Нейросеть генерирует изображения блюд по рецептам их приготовления - 1
Сравнение настоящих фотографий (вверху), сгенерированных изображений с семантической регуляризацией (средний ряд) и без неё

Группа исследователей из Тель-Авивского университета разработала нейронную сеть, способную генерировать изображения блюд по их текстовым рецептам. Таким образом, домохозяйка может заранее посмотреть, что получится в итоге, если изменить тот или иной пункт рецепта: добавить новый ингридиент или убрать какой-то из существующих. В принципе, эта научная работа — хорошая идея для коммерческого приложения, тем более что исходный код программы опубликован в открытом доступе.
Читать полностью »

Очередную неделю мы заканчиваем квантовыми шашками, претензиями к Google, лучшими приложениями и играми 2018 года, магазинами приложений и приложениями прачечных. С Новым годом! Следующий наш дайджест выйдет в январе.

Дайджест интересных материалов для мобильного разработчика #280 (17 — 23 декабря) - 1Читать полностью »

image

Когда-то Стив Джобс и Стив Возняк закрылись в гараже и выкатили первый Mac. Было бы классно, если всегда можно было закрыть программистов в гараже и получить MVP с большим потенциалом. Однако, если добавить к программистам пару людей, готовых оценивать пользовательский опыт и искать что-то инновационное, то шансы на успех растут.

У нашей команды из 5 человек появилась определённая идея, ради которой мы решили слегка захватить мир похакатонить.

Читать полностью »