Рубрика «глубокое обучение»

Представлюсь

Всем привет! Меня зовут Влад Виноградов, я руководитель отдела компьютерного зрения в компании EORA.AI. Мы занимаемся глубоким обучением уже более трех лет и за это время реализовали множество проектов для российских и международных клиентов в которые входила исследовательская часть и обучение моделей. В последнее время мы фокусируемся на решении задач поиска похожих изображений и на текущий момент создали системы поиска по логотипам, чертежам, мебели, одежде и другим товарам.

Эта публикация предназначена для Machine Learning инженеров и написана по мотивам моего выступления Читать полностью »

Модели глубокого обучения улучшаются с увеличением количества данных и параметров. Даже с последней моделью GPT-3 от Open AI, которая использует 175 миллиардов параметров, нам ещё предстоит увидеть плато роста количества параметров.

Для некоторых областей, таких как NLP, рабочей лошадкой был Transformer, который требует огромных объёмов памяти графического процессора. Реалистичные модели просто не помещаются в памяти. Последний метод под названием Sharded  [букв. ‘сегментированный’] был представлен в Zero paper Microsoft, в котором они разработали метод, приближающий человечество к 1 триллиону параметров.

Специально к старту нового потока курса по Machine Learning, делюсь с вами статьей о Sharded в которой показывается, как использовать его с PyTorch сегодня для обучения моделей со вдвое большей памятью и всего за несколько минут. Эта возможность в PyTorch теперь доступна благодаря сотрудничеству между командами FairScale Facebook AI Research и PyTorch Lightning.

Как экономить память и удваивать размеры моделей PyTorch с новым методом Sharded - 1


Читать полностью »

image

Видео от 3Blue1Brown отличаются поразительной понятностью и лаконичность. Делать конспект видеоуроков по нейронным сетям у меня не получилось, ибо это была бы просто раскадровка, да и особая магия динамики именно видео непросто передать.

Из комментариев к прошлым публикациям мне стало понятно, что есть большое количество людей, кто не знает про канал, поэтому хочу поделиться четырьмя видео (+ русские субтитры и дубляж) и сэкономить время школьникам, родителям и учителям, чтобы они могли иметь быстрый доступ к самому интересному и качественному объяснению одной из самых важных тем современности.
Читать полностью »

Стагнация машинного обучения. Многие задачи не будут решены никогда? - 1

Последние годы глубокого обучения — сплошная череда достижений: от победы над людьми в игре Го до мирового лидерства в распознавании изображений, голоса, переводе текста и других задачах. Но этот прогресс сопровождается ненасытным ростом аппетита к вычислительной мощности. Группа ученых из MIT, Университета Ёнсе (Корея) и Университета Бразилиа опубликовала метаанализ 1058 научных работ по машинному обучению. Он явно показывает, что прогресс в области машинного обучения (ML) — это производная от вычислительной мощности системы. Производительность компьютеров всегда ограничивала функциональность ML, но сейчас потребности новых моделей ML растут гораздо быстрее, чем производительность компьютеров.

Исследование демонстрирует, что достижения машинного обучения по сути — немногим более чем следствие закона Мура. И по этой причине многие задачи ML не будут решены никогда в силу физических ограничений вычислителя.
Читать полностью »

Татарстан давно проявляет амбициозность в развитии высоких технологий. Недавно 10-летие отметил казанский IT-парк — тот самый, где стартапы и небольшие компании рвутся на международный уровень. Город Иннополис тоже демонстрирует мощь вопреки скептическим прогнозам: если верить статистике, в 2019-м число жителей увеличилось на треть, а в технопарке открылись новые офисы мировых корпораций. Окей, а как здесь обстоят дела с общемировыми IT-трендами — машинным обучением и технологиями искусственного интеллекта? Читать полностью »

TL;DR: перевод поста Chaitanya Joshi "Transformers are Graph Neural Networks": схемы, формулы, идеи, важные ссылки. Публикуется с любезного разрешения автора.

Друзья-датасаентисты часто задают один и тот же вопрос: графовые нейронные сети (Graph Neural Networks) — прекрасная идея, но были ли у них хоть какие-то настоящие истории успеха? Есть ли у них какие-нибудь полезные на практике приложения?

Трансформеры как графовые нейронные сети - 1

Можно привести в пример и без того известные варианты — рекомендательные системы в Pinterest, Alibaba и Twitter. Но есть и более хитрая история успеха: штурмом взявшая промышленную обработку естественного языка архитектура Transformer.

В этом посте мне бы хотелось установить связи между графовыми нейронными сетями и трансформерами (Transformers). Мы поговорим об интуитивном обосновании архитектур моделей в NLP- и GNN-сообществах, покажем их связь на языке формул и уравнений и порассуждаем, как оба "мира" могут объединить усилия, чтобы продвинуть прогресс.

Читать полностью »

Кустикова Валентина, Васильев Евгений, Вихрев Иван, Дудченко Антон, Уткин Константин и Коробейников Алексей.

Intro image

Intel Distribution of OpenVINO Toolkit — набор библиотек для разработки приложений, использующих машинное зрение и Deep Learning. А эта статья расскажет, как создавалось демо-приложение «Умная библиотека» на основе библиотеки OpenVINO силами студентов младших курсов. Мы считаем, что данная статья будет интересна начинающим свой путь в программировании и использовании глубоких нейронных сетей.

Читать полностью »

image

Microsoft выпускает библиотеку с открытым исходным кодом под названием DeepSpeed, которая значительно расширяет возможности обучения для больших моделей естественного языка. Она дает возможность обучения нейросетей на моделях со 100 млрд параметров и более. DeepSpeed ​​совместима с PyTorch. Читать полностью »

Технологии глубокого обучения за короткий срок прошли большой путь развития — от простых нейронных сетей до достаточно сложных архитектур. Для поддержки быстрого распространения этих технологий были разработаны различные библиотеки и платформы глубокого обучения. Одна из основных целей подобных библиотек заключается в том, чтобы предоставить разработчикам простые интерфейсы, позволяющие создавать и обучать нейросетевые модели. Подобные библиотеки позволяют своим пользователям обращать больше внимания на решаемые задачи, а не на тонкости реализации моделей. Для этого может понадобиться скрывать реализацию базовых механизмов за несколькими уровнями абстракции. А это, в свою очередь усложняет понимание базовых принципов, на которых основаны библиотеки глубокого обучения.

О реализации библиотеки для глубокого обучения на Python - 1

Статья, перевод которой мы публикуем, нацелена на разбор особенностей устройства низкоуровневых строительных блоков библиотек глубокого обучения. Сначала мы кратко поговорим о сущности глубокого обучения. Это позволит нам понять функциональные требования к соответствующему программному обеспечению. Затем мы рассмотрим разработку простой, но работающей библиотеки глубокого обучения на Python с использованием NumPy. Эта библиотека способна обеспечить сквозное обучение простых нейросетевых моделей. По ходу дела мы поговорим о различных компонентах фреймворков глубокого обучения. Библиотека, которую мы будем рассматривать, совсем невелика, меньше 100 строк кода. А это значит, что с ней будет достаточно просто разобраться. Полный код проекта, которым мы будем заниматься, можно найти здесь.
Читать полностью »

Предыдущий выпуск

Экзоскелеты; бионические протезы; промышленные роботы; исследование автоматических рекоммендаций Ютуба; создание моделей машинного обучения в браузере с помощью MediaPipe; виртуальная клавиатура для смартфонов; 5G; еще раз о сильном и слабом ИИ.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js