Рубрика «алгоритмы машинного обучения»

Основы аналитики и ML простым языком ч.1 - 1

Книга «Бизнес-аналитика: от данных к знаниям» впервые увидела свет в 2009 году, но это всё ещё классика для начинающих специалистов. Ниже представлен конспект первой главы, посвящённый введению в анализ данных и ML.

Кратко о книге

Читать полностью »

Дружелюбный русский алгоритмический язык, который обеспечивает наглядность сокращенно ДРАКОН — визуальный язык, созданный в СССР для космической программы «Буран». Его разработали для задач высокой ответственности, где ошибка недопустима. Основная цель ДРАКОН — сделать логику однозначной и понятной. Сегодня мне кажется, что ДРАКОН может обрести новую жизнь благодаря искусственному интеллекту. Я не встречал статей о его применении с ИИ, и поэтому решил написать об этом.

Читать полностью »

В последние годы большие языковые модели кардинально изменили ландшафт искусственного интеллекта, открывая невероятные возможности для автоматизации текстовых задач. Однако, несмотря на впечатляющие успехи, одна из ключевых проблем остаётся нерешённой — модели часто допускают логические ошибки, создают неясные или избыточные формулировки, а также генерируют тексты с низкой степенью доверия к собственным ответам.

В своей практике я столкнулся с необходимостью повышения качества генерации без постоянного ручного контроля и затратных этапов дообучения. Это подтолкнуло меня к идее нового подхода — Читать полностью »

Был проведён эксперимент для проверки, можно ли существенно уменьшить объём вычислений в алгоритме обратного распространения ошибок с параллельными вычислениями за счёт использования на каждом шаге обучения только части обучающих образцов, выбранных случайным образом, а также определение того, какой выигрыш по времени даст использование языка Ассемблера в самых внутренних циклах (в программе, написанной на языке C++).

Читать полностью »

Адаптировали статью Marina Tosic, в которой автор выясняет, в чём сходства и различия между устройством человеческого мозга и моделей машинного обучения. Разобраться в теме нам помогли: кандидат технических наук Василий Борисов и архитектор ML-решений в РБК Кирилл Думнов.

В 2024 году значение машинного обучения и искусственного интеллекта, наконец, признали все, в том числе Нобелевский комитет. Демис Хассабис и Джон Джампер получили Нобелевскую премию по химииЧитать полностью »

Соцсети с нами уже больше 20 лет, но с тех пор процесс их использования изменился до неузнаваемости. Если раньше пользователи сами искали себе контент, изучая личные странички других людей и групп, то сейчас алгоритмы всё делают за них.

В 2006 Запретбук начался с хронологической ленты, все было просто, а уже в 2009 они запустили первый "умный" алгоритм EdgeRankЧитать полностью »

Математическая революция глубокого мышления: как rStar-Math превращает небольшие языковые модели в мастера математических рассуждений

Аннотация

Читать полностью »

А вы знаете, как руда превращается в чугун? Даже на автоматизированном производстве многое зависит от ручной экспертизы. На производстве железорудных окатышей ещё недавно качество продукции измерялось буквально на ощупь. Дата-сайентисты помогли снизить зависимость от человеческого фактора. Как это получилось, что общего у окатышей с клетками и зелёным горошком, и как модели помешал кран с водой — читайте в этой статье.

Читать полностью »

Как российские разработчики заставили GPT предсказывать биржевые котировки - 1

18 мая 2024 на конференции «Тюльпаномания» Тихон Павлов, количественный аналитик «Финансовой компании Викинг» раскрыл секрет использования GPT-4 для прогнозирования биржевых котировокЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js