Рубрика «dataset»

Когда пришло время выбирать тему диплома, я, как и многие студенты, понятия не имел, о чём писать. После мозгового штурма с одногруппниками родилась идея, которая из простого «варианта для защиты» превратилась в полноценный инженерный проект: «исследование и разработка системы автоматического распознавания дефектов печатных плат».

Со временем я понял, что выбрал тему не случайно - это реально актуальная задача для производства, где качество пайки напрямую влияет на работоспособность устройств, а ещё отличный шанс пройти весь цикл Computer Vision проекта от сбора данных до обучения моделей.

Читать полностью »

На imcdb.org энтузиасты уже два десятка лет отмечают автомобили в фильмах: кадры, марки, модели. Верифицируют находки на форуме, спорят о деталях. В итоге появилась крупнейшая база “машин-актёров” в кино: 1,75 млн страниц с кадрами и описаниями транспорта из фильмов разных стран. Я собрал всё это в один датасет.

Читать полностью »

В статье представлено многоязычное расширение SWE-Bench от команды Doubletapp — бенчмарка для оценки больших языковых моделей (LLM) на реальных задачах программной инженерии, на различных языках программирования и кодовых базах индустрии. О процессе сбора SWE-Bench мы уже рассказывали в отдельной статьеЧитать полностью »

Исходный код, разобранный в статье, опубликован в этом репозитории

В вакансиях LLM инженеров присутствует слово RAG. Это подразумевает интеграцию во внешнюю базу данных, например, PostgreSQL с PGVector или MongoDB Atlas Vector Search.

https://supabase.com/blog/openai-embeddings-postgres-vector

Привет!

Туториал будет посвящен подготовке узкоспециализированного русскоязычного медицинского датасета для последующего файнтюнинга (тонкой настройки) открытых языковых моделей.

Описанная методика выверена методом многочисленных проб и ошибок. Русификация тут приведена больше как пример того, как при помощи сырого набора данных, можно сгенерировать качественные данные под узкую задачу с минимальными затратами.

В данном туториале описан процесс создания русского медицинского датасета из англоязычногоЧитать полностью »

Как дообучать LLM с помощью Supervised Fine-Tuning - 1

Обычно большие языковые модели (large language model, LLM) обучают в несколько этапов, включающих предварительное обучение и множество этапов fine-tuning (см. ниже). Предварительное обучение — это дорогостоящий процесс (например, требующий многих сотен тысяч долларов на вычислительные ресурсы), однако fine-tuning модели LLM (или контекстное обучение) по сравнению с этим гораздо дешевле (например, сотни долларов или даже меньше). Учитывая широкую доступность и бесплатность (даже для коммерческого использования) предварительно обученных LLM (например, MPT, Falcon или LLAMA-2), мы можем создавать большой спектр мощных приложений благодаря fine-tuning моделей под нужные задачи.

Как дообучать LLM с помощью Supervised Fine-Tuning - 2

Этапы обучения LLM

На текущем этапе исследований ИИ одним из самых широко применяемых видов fine-tuning моделей LLM стал supervised fine-tuning (SFT). При этой методике курируемый датасет высококачественных выходных данных LLM применяется для непосредственного fine-tuning модели. SFT прост и дёшев в использовании, это полезный инструмент выравнивания языковых моделей, ставший популярным даже за пределами исследовательского сообщества опенсорсных LLM. В этой статье мы вкратце расскажем о принципах SFT, рассмотрим исследования по этой теме и приведём примеры того, как практикующие специалисты могут с лёгкостью пользоваться SFT, написав всего несколько строк кода на Python.
Читать полностью »

Если вам хочется разбавить общение в telegram чате нелепыми, но зачастую меткими и смешными комментариями, или вы ищете информацию по интеграции языковой модели в бота, или хотите сами обучить языковые модели на данных с 2ch, то в этой статье описаны шаги, как это сделать.

Бот

Запустил бота, которого можно добавлять в чаты, и он будет отвечать на сообщения, как на посты на 2ch.hk/b/.

Для этого:

  1. Mall Customers Dataset — данные посетителей магазина: id, пол, возраст, доход, рейтинг трат. (Вариант применения: Customer Segmentation Project with Machine Learning)
  2. Iris Dataset — датасет для новичков, содержащий размеры чашелистиков и лепестков для различных цветков.
  3. MNIST Dataset — датасет рукописных цифр. 60 000 тренировочных изображений и 10 000 тестовых изображений.
  4. The Boston Housing DatasetЧитать полностью »

https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js