Рубрика «нейросеть»

изображение

Open In Colab

После релиза нашей первой модели, расставляющей знаки препинания и большие буквы, было много пожеланий доработать её, чтобы она могла обрабатывать тексты целиком, а не отдельные предложения. Это коллективное пожелание и было осуществлено в нашей новой версии модели.

изображение

В целом, архитектура и датасеты остались прежними. Что изменилось:

  • обучение теперь производилось не на отдельных предложениях, а на нескольких последовательных предложениях (принимаем во внимание, что конструктивное ограничение модели при обучении — 512 токенов на вход, что позволяет свободно подавать ~150 слов на любом из четырех поддерживаемых языков)
  • для ускорения обучения модели сокращение словаря теперь проводилось не только на инференсе, но и на трейне, что позволило увелить размер батча

Читать полностью »

Робот-газонокосилка, часть 3. Сегментация травы нейросетью - 1

В этой части мы научим газонокосилку отличать скошенную траву от нескошенной с помощью нейросети. А также определять препятствия, такие как бетонные дорожки, что было невозможно только датчиком расстояния в предыдущей части.

Читать полностью »

В фильмах или роликах с YouTube мы наблюдаем происходящее из одной точки, нам не доступны перемещение по сцене или смещение угла зрения. Но, кажется, ситуация меняется. Так, исследователи из Политехнического университета Вирджинии и Facebook разработали новый алгоритм обработки видео. Благодаря ему, можно произвольно изменять угол просмотра уже готового видеопотока. Что примечательно — алгоритм использует кадры, которые получены при съемке на одну камеру, совмещение нескольких видеопотоков с разных камер не требуется.

В основе нового алгоритма — нейросеть NeRF (Neural Radiance Fields for Unconstrained). Эта появившаяся в прошлом году сеть умеет превращать фотографии в объемную анимацию. Однако для достижения эффекта перемещения в видео проект пришлось существенно доработать.
Читать полностью »

Перевод статьи A Recipe for Training Neural Networks от имени автора (Andrej Karpathy). С некоторыми дополнительными ссылками.

Также доступна версия на украинском языке в личном блоге: Рецепт навчання нейрнонних мереж.

Рецепт обучения нейросетей - 1

Несколько недель назад я опубликовалЧитать полностью »

ИИ итоги уходящего 2020-го года в мире машинного обучения - 1

Подведем основные итоги уходящего года. Рассмотрим самые громкие открытия в мире компьютерного зрения, обработки естественного языка, генерации изображений и видео, а также крупный прорыв в области биологии. Коротко о самом главном за год!

Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг»Читать полностью »

image
Источник фото
Карликовая многозубка, самое маленькое млекопитающее по массе. Внутри маленький целостный сложный мозг, который уже принципиально можно картировать

Короткий ответ — можно, но не полную и не очень точную. То есть мы ещё не можем скопировать её сознание, но приблизились к этому как никогда. Проживите ещё лет двадцать — и, возможно, ваш мозг тоже получится забэкапить.

Чтобы приблизиться к оцифровке сознания и такому экзотическому виду бессмертия, стоит сначала разобраться с живыми нейронными сетями. Их реверс-инжиниринг показывает нам, как вообще может быть устроен процесс мышления (вычислений) в хорошо оптимизированных системах.

60 лет назад, 13 сентября 1960 года, учёные собрали первый симпозиум из биологов и инженеров, чтобы они могли разобраться, в чём же разница между сложной машиной и организмом. И есть ли она вообще. Науку назвали бионикой, а целью обозначили применение методов биологических систем к прикладной инженерии и новым технологиям. Биосистемы рассматривались как высокоэффективные прототипы новой техники.

Военный нейроанатом Джек Стил стал одним из людей, заметно повлиявших на дальнейший прогресс в области технологий, в том числе в области ИИ, где развитие получили такие направления, как нейроморфная инженерия и биоинспирированные вычисления. Стил был медиком, разбирался в психиатрии, увлекался архитектурой, умел управлять самолётом и сам чинил свою технику, то есть был вполне неплохим прикладным инженером. Научная работа Стила стала прообразом сценария фильма «Киборг». Так что с некоторой натяжкой можно назвать его прадедушкой Терминатора. А где Терминатор, там и Скайнет, как известно.

Этот пост написан на основе материалов будущей книги нашего коллеги Сергея Маркова «Охота на электроовец: большая книга искусственного интеллекта».
Читать полностью »

Здесь и далее — скриншоты с artlebedev.ru, если не указано иное
Здесь и далее — скриншоты с artlebedev.ru, если не указано иное

Недавно мы встретились с ребятами из Студии Артемия Лебедева, чтобы подробно расспросить их о дизайнерской нейросети, которую они год выдавали клиентам за настоящего живого дизайнера — с именем, фоткой, почтой, портфолио, страницей на ФБ и всеми делами. Вопросы мы задавали вместе с Читать полностью »

Как понять, что нейросеть решит вашу проблему. Прагматичное руководство - 1

Haystacks at Sunset Reimagined by AshnoAlice

Инженер по машинному обучению Джордж Хосу задает вопрос: «Какие проблемы решает машинное обучение?». Или конкретнее, с учетом современного развития отрасли: «Какие проблемы нейросеть способна решить на практике?». Команда Mail.ru Cloud Solutions перевела статью, так как рассуждения на эту тему, как нам кажется, встречаются редко.
Читать полностью »

Для начала выясните, в каком полушарии мозга, левом или правом вы находитесь. Для этого, не спеша разделите свой мозг на 2 части вдоль жёлтой линии, как показано на рис. 1. Старайтесь при данной операции не повредить отростки нейронов – аксоны и дендриты, а также и сами окончания — синапсы. Они ещё пригодятся для дальнейшего подключения. Подготовьте на биопринтере копии половинок вашего мозга и аккуратно подключите к ним собственные половинки, как показано красными стрелками, соблюдая нумерацию всех нейронных окончаний.

Инструкция по переносу своего сознания на цифровой носитель - 1

Рис. 1.
Читать полностью »

Минобороны потратит 387 млн руб. на создание и обучение нейросетей для нового поколения военных систем с ИИ - 1

Министерство обороны РФ в конце марта 2020 года объявило о проведении закрытого конкурса на выполнение научно-исследовательской работы «Исследования по созданию экспериментального образца комплекса разработки, обучения и реализации глубоких нейронных сетей для нового поколения военных систем с искусственным интеллектом (шифр „Каштан“)».
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js