Рубрика «кредитный скоринг»

В условиях когда большая часть заявок на кредит рассматривается автоматически, мониторинг становится особенно важным. Всё ли работает в штатном режиме, как меняются ключевые показатели, какие изменения нужно внести, чтобы добиться нужного результата?

В статье я расскажу, как мы мониторим кредитный конвейер с помощью Power BI, какие отчеты и метрики используем для оценки качества выдач.

Ключевые показатели внутри дня

Мониторинг работы кредитного скоринга в Power BI - 1
Читать полностью »

Рассмотрим, как работают алгоритмы в банковском скоринге, какие метрики используются и какие параметры заемщика влияют на то, выдадут кредит или нет. В статье описывается прошедший конкурс с kaggle по предсказанию вероятности дефолта и приводятся влияющие на риск дефолта параметры.

Ошибка первого и второго рода

Цель банка – заработать деньги. Первый риск, с которым сталкивается кредитная организация — дать кредит заемщику, который допустит дефолт. Дефолт может иметь разным причины, от финансовых трудностей заемщика, и заканчивая фродом.

Для банка это — ошибка первого рода.

Но если банк будет вести жесткую политику, и никому не выдает кредиты, даже тем, кто вернул бы деньги, то банк не заработает на процентах. Отказ в кредите ответственному заемщику – ошибка второго рода.

Для оценки качества принимаемых алгоритмом решений, используется коэффициент Джини (GINI). В экономике и в Data Science коэффициент Gini имеет разную интерпретацию. Для кредитного скоринга он рассчитывается, как

GINI = 2 ROC AUC — 1

Для оценки банковского скоринга используется стандартная ROC AUC кривая!

Что влияет на выдачу кредита. Обзор соревнования Home Credit Default Risk - 1
Читать полностью »

Когда у вас есть какая-то система принятия решений по заемщику и нужно ее улучшить, то классическая постановка задачи в этом случае обычно звучит так. «Снизить просрочку, не уменьшив уровень одобрения». Либо: «Повысить уровень одобрения, не увеличив просроку». Именно в такой постановке презентуют свои решения вендоры, предоставляющие скоринговый бал. Такую же формулировку можно услышать на конференциях по скорингу, где презентуют свои достижения инхаус разработчики.  К сожалению, никто подробно не раскрывает, что именно понимается под терминами просрочка и уровень одобрения.
Успешный результат работы презентуют так:
Считаем деньги. Выбор метрики в кредитном скоринге - 1
Читать полностью »

AntipovSN and MihhaCF

Часть вторая, в которой Атосу все норм, а вот Графу де ля Фер чего-то не хватает

Вступление от авторов:

Добрый день! Сегодня мы продолжаем цикл статей, посвященный скорингу и использованию в оном теории графов. С первой статьей Вы можете ознакомиться здесь.

Все шуточные аллегории, вставки и прочее призваны немного разгрузить повествование и не позволить ему свалиться в нудную лекцию. Всем, кому не зайдет наш юмор, заранее приносим извинения

Цель данной статьи: не более, чем за 30 минут, описать основные способы хранения данных о графах и описать правила и принципы построения нашей модели для скоринга заемщика.

Термины и определения:

  • Хеш-таблица — это структура данных, реализующая интерфейс ассоциативного массива, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. Поиск по хеш-таблице, в среднем, осуществляется за время О(1).

Аудиторы, нанятые ПАО «Король» для оценки кредитоспособности НПАО «Один за всех», столкнулись с некоторыми проблемами. С одной стороны, описать схему взаимодействия 10-15 компаний и провести первичную оценку взаимодействия между компаниями очень просто, достаточно иметь под рукой лист бумаги и ручку. Но, что делать, если у вас имеется информация о взаимодействии десятков или сотен тысяч компаний? Например, если Вам нужно описать взаимодействия Арамиса со всеми его пассиями или Д’артаньяна со всеми, с кем он дрался?

Читать полностью »

AntipovSN and MihhaCF

Часть первая, в которой Граф еще не стал Атосом, не встретил Миледи и все у него хорошо

Вступление от авторов:

Добрый день! Сегодня мы начинаем цикл статей, посвященных скорингу и использованию в оном теории графов (Т.Г.). Надеюсь, нам хватит запала, сил и терпения, т.к. тема достаточно объемная и, на наш взгляд, интересная.

Несмотря на шуточное название, мы постараемся затронуть отнюдь не шуточные темы, которые уже сейчас влияют на жизнь многих из нас, а в ближайшем будущем могут коснуться всех, без исключения.

Все шуточные аллегории, вставки и прочее призваны немного разгрузить повествование и не позволить ему свалиться в нудную лекцию. Всем, кому не зайдет наш юмор, заранее приносим извинения

А теперь к делу.

Цель данной статьи: не более, чем за 30 минут, ввести читателя в проблематику исследования, определить уровень рассмотрения проблемы, описать основную концепцию исследования и познакомить с базовыми терминами.

Термины и определения:

  • Скоринг – система бальной оценки объекта, основанная на численных статистических методах.
  • Граф – способ моделирования связей объектов. Представьте, что Вы с друзьями играете в покер и хотите смоделировать, кто кому сейчас должен. Например, «Д’Артаньян должен Атосу 10 луидоров»

Граф Скоринг де ля Фер или исследование на тему кредитного скоринга, в рамках расширения кругозора - 1

Полный граф может выглядеть следующим образом:
Граф Скоринг де ля Фер или исследование на тему кредитного скоринга, в рамках расширения кругозора - 2
Арамис всегда был хитрож… себе на уме, ему должен даже Атос. Портос, пока не встретил госпожу Кокнар, перевязь не мог себе нормальную купить и умудрился задолжать нищеброду Д’артаньяну, хотя, честно говоря, они всю дорогу что-то мутили вместе…

Читать полностью »

Кому вы звоните, что пишете в Facebook, что ищете в Google, куда ходите по пятницам — всё это банки скоро начнут учитывать при выдаче кредита.

Финансовые учреждения весьма консервативны и пока не осознают ценность телефонных метаданных, а также другой информации, которую можно со смартфона и из социальных сетей. Но скоро ситуация изменится. Появился ряд финансовых ИТ-стартапов, которые разрабатывают технологии анализа метаданных, чтобы вычислить кредитный рейтинг пользователя и вероятность возврата им кредита.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js